دلایل و پیش‌بینی زلزله؟
زلزله
 
 
زمین لرزه یکی از وحشتناک ترین پدیده های طبیعت محسوب می شود. اغلب زمینی را که روی آن ایستاده ایم، به صورت تخته سنگ های صلب و محکمی تصور می کنیم که از استحکام زیادی برخوردار است. هنگامی که زمین لرزه ای روی می دهد برای لحظه ای این تصور بر هم می ریزد، اما طی همان لحظه کوتاه خسارت های شدیدی وارد می شود. با توجه به پیشرفت هایی که در حوزه علوم مختلف صورت گرفته است، دانشمندان توانسته اند نیروهایی را که باعث زمین لرزه می شود، شناسایی کنند. علاوه بر آن با استفاده از فناوری های نوین می توان شدت یک زلزله و مکان آن را حدس زد. مهم ترین کار باقی مانده آن است که راهی برای پیش گویی زمین لرزه بیابیم تا مردم هنگام وقوع آن غافلگیر نشوند.

تکان های زمین:

زمین لرزه در واقع ارتعاشی است که در طول پوسته زمین به حرکت در می آید. اگر یک کامیون بزرگ از نزدیکی منزل شما عبور کند، خیابان را به لرزه می آورد و شما احتمالاً لرزه های خانه را احساس می کنید، در این حالت می توان گفت که زمین لرزه کوچکی رخ داده است، اما کلمه زمین لرزه معمولی به حوادثی اطلاق می شود که در آن منطقه بزرگی همانند یک شهر تحت تأثیر این لرزش قرار گیرد.
برای وقوع یک زمین لرزه چند دلیل می توان ذکر کرد:
- فوران گدازه های آتشفشانی
- برخورد یک شهاب سنگ
- انفجارهای زیرزمینی (برای مثال یک آزمایش هسته ای زیرزمینی)
- فرو ریختن یک سازه (همانند تخریب یک معدن)
اما اصلی ترین دلیل وقوع زمین لرزه را می توان حرکات صفحه های (Plates) زمین دانست.هر از گاهی در اخبار می شنویم که زمین لرزه ای روی داده است، اما باید دانست که زمین لرزه پدیده ای است که هر روز در کره زمین روی می دهد. براساس تحقیقات جدید هرساله حدود سه میلیون زمین لرزه روی می دهد، یعنی هشت هزار زمین لرزه در روز یا هر 11 ثانیه یک زمین لرزه.
- حرکت صفحه ها در خلاف جهت یکدیگر و دور شدن از هم.
- ضمن حرکت در خلاف جهت به همدیگر بمالند.
اگر دو صفحه از یکدیگر دور شوند گدازه هایی که از سنگ های مذاب تشکیل شده اند، از بین صفحه های پوسته زمین خارج می شوند (این عمل اغلب در کف اقیانوس ها روی می دهد) هنگامی که این گدازه ها سرد شوند، سخت شده و به شکل پوسته های جدید در می آیند که فاصله بین دو صفحه را پر می کنند. اگر دو صفحه به سمت یکدیگر به حرکت درآیند، معمولاً یک صفحه به زیر صفحه دیگر می خزد. در بعضی موارد، هنگامی که دو صفحه به یکدیگر فشار می آورند، برای هیچ کدام از صفحه ها امکان ندارد که به زیر صفحه دیگر برود، در این صورت این دو صفحه ضمن فشار آوردن به همدیگر یک رشته کوه را به وجود می آورند. در بعضی مواقع نیز صفحه ها ضمن عبور از کنار یکدیگر به همدیگر فشار وارد می کنند. برای مثال تصور کنید یک صفحه به سمت شمال و دیگری به سمت جنوب حرکت کند. در این صورت این صفحه ها از محل تماس به یکدیگر نیرو وارد می سازند. در جایی که این صفحات به یکدیگر می رسند، گسل تشکیل می شود. در حقیقت گسل ترک هایی در پوسته زمین است که در دو طرف صفحه هایی که در خلاف جهت یکدیگر در حال حرکت هستند، مشاهده می شود. احتمال وقوع زلزله در اطراف خطوط گسل بیشتر از هر جای دیگر است. گسل ها انواع مختلفی دارند که براساس موقعیت خط گسل و چگونگی حرکت دو صفحه نسبت به هم تقسیم بندی می شود. در تمام انواع گسل ها، صفحه ها کاملاً به یکدیگر فشار وارد می سازند و در نتیجه هنگام حرکت آنها اصطکاک شدیدی به وجود می آید. اگر نیروی اصطکاک بسیار شدید باشد مانع حرکت آنها می شود در این حالت فشاری که باعث ایجاد گسل می شود افزایش می یابد. اگر میزان این فشار از حد معینی بیشتر شود، بر نیروی اصطکاک غلبه می کند و صخره ها ناگهان می شکنند.به عبارت دیگر، هنگامی که صخره ها به یکدیگر فشار وارد می کنند، انرژی پتانسیل به وجود می آید و هنگامی که صخره ها به حرکت درمی آیند، انرژی پتانسیل به جنبشی تبدیل می شود. اغلب زمین لرزه ها در اطراف مرز صفحه های زمین ساختی روی می دهد زیرا در این منطقه در اثر حرکت صفحه ها منطقه گسل به وجود می آید که دارای گسل های متعدد و به هم پیوسته ای است. در منطقه گسل، آزاد شدن انرژی جنبشی در یک گسل ممکن است باعث افزایش انرژی پتانسیل در گسل کناری شود که این عمل به زمین لرزه دیگری منجر می شود. به همین دلیل است که گاهی در یک منطقه کوچک زلزله های متعددی در فاصله های زمانی کم روی می دهد.البته گاهی اوقات زمین لرزه هایی در وسط این صفحه ها نیز روی می دهد. یکی از شدیدترین زمین لرزه های ثبت شده زمین لرزه ای است که در صفحه قاره ای آمریکای شمالی در سال 1811 و 1812 اتفاق افتاد. دانشمندان در دهه 1970 دریافتند که احتمالاً منشاء این زمین لرزه یک منطقه گسل 600 میلیون ساله است که زیر لایه های متعدد سنگ و صخره مدفون شده بود.

امواج زمین لرزه :

درست مثل هنگامی که درسطح آب اغتشاش روی می دهد، انرژی آن به صورت امواج منتقل می شود، وقتی که شکست یا جابه جایی در پوسته زمین روی می دهد، انرژی آن به صورت امواج زمین لرزه منتقل می شود. در هر زمین لرزه ای چند نوع موج مختلف مشاهده می شود. امواج اصلی از لایه های داخلی زمین عبور می کنند، در حالی که امواج سطحی از سطح می گذرند. اغلب ویرانی های زلزله توسط امواج سطحی - که امواج L هم نامیده می شوند _ به وجود می آید، زیرا این امواج ارتعاشات شدیدی را به وجود می آورند. هنگامی که امواج اصلی به سطح زمین رسیدند، امواج سطحی را به وجود می آورند.
امواج اصلی خود به دو گروه مهم تقسیم بندی می شوند:
امواج اولیه که امواج P نیز نامیده می شوند، با سرعت 5/1 تا 8 کیلومتر در ساعت حرکت می کنند. سرعت حرکت این امواج به جنس زمینی که این امواج از آنها عبور می کنند بستگی دارد. سرعت این امواج از موج های دیگر بیشتر است و بنابراین سریع تر به سطح زمین می رسند. این امواج قابلیت عبور از جامدات، مایعات و گازها را دارند و به همین دلیل به طور کامل از زمین عبور می کنند. وقتی که این امواج از صخره ها عبور می کنند، در مسیر حرکت خود به آنها به سمت جلو و عقب فشار وارد می کنند.
امواج ثانویه امواج S نامیده می شوند و مدت کوتاهی بعد از امواج P می رسند. این امواج هنگام حرکت خود، صخره ها را به سمت بالا فشار می دهند، یعنی ارتعاش صخره ها عمود بر مسیر حرکت این امواج است. امواج S برخلاف امواج P نمی توانند در داخل زمین به خط مستقیم حرکت کنند. این امواج فقط از مواد جامد می گذرند و به همین دلیل هنگامی که در مرکز زمین به مایع برسند، متوقف می شوند.با این همه هر دو نوع موج از سطح زمین می گذرند و بنابراین می توان آنها را در آن سوی نقطه ای که زمین لرزه روی داده است، شناسایی کرد. در هر لحظه تعداد زیادی امواج زلزله ای ضعیف در قسمت های مختلف زمین قابل شناسایی است. امواج سطحی را می توان تا حدودی به امواج آب تشبیه کرد. چرا که امواج سطحی حین حرکت، سطح زمین را به سمت بالا و پایین می رانند. حرکت این امواج باعث ویرانی های شدیدی می شود، چرا که صخره ها و پی ساختمان ها را به ارتعاش می آورد. امواج L از همه کندتر هستند به همین دلیل شدیدترین لرزش ها در پایان یک زمین لرزه روی می دهد.

شناسایی کانون زلزله :

همان طور که ذکر شد سه نوع مختلف موج زلزله وجود دارد که هر کدام با سرعت مشخصی حرکت می کند. به رغم آنکه سرعت دقیق امواج P و S بسته به جنس و نوع ماده ای که این امواج از آن عبور می کنند، متغیر است، نسبت سرعت حرکت آن دو در تمام زمین لرزه ها تقریباً ثابت باقی می ماند.معمولاًسرعت امواج P،حدود6/1برابرسرعت امواج S است. دانشمندان می توانند با استفاده از این نسبت، فاصله بین هرنقطه از سطح زمین را با کانون زمین لرزه محاسبه کنند. کانون زلزله مکانی است که امواج زمین لرزه از آنها شروع شده اند. برای تشخیص کانون زلزله از ابزاری استفاده می شود که زلزله نگار نامیده می شود. زلزله نگار دستگاهی است که امواج مختلف را ثبت می کند. برای یافتن فاصله بین زلزله نگار و کانون زلزله، دانستن زمان رسیدن این امواج نیز ضروری است. با در اختیار داشتن این اطلاعات، اختلاف زمانی بین رسیدن این امواج محاسبه شده و سپس نمودار ویژه ای رسم می شود که در آن فاصله ای را که موج می تواند طی مدت اختلاف زمانی محاسبه شده طی کند، به دست می آید. اگر اطلاعاتی از این دست را از سه یا چند نقطه مختلف به دست آوریم، می توان مکان کانون زلزله را به دست آورد. برای این کار کافی است که کره ای فرضی حول هر یک از زلزله نگار ها رسم کرد که در آن مکان اندازه گیری به عنوان مرکز کره و فاصله محاسبه شده تا کانون زلزله به عنوان شعاع کره در نظر گرفته می شود. پس سطح کره مورد نظر نشان دهنده تمام نقاطی است که از زلزله نگار به اندازه مورد نظر فاصله دارد. بنابراین کانون زلزله مورد نظر باید در جایی در سطح این کره قرار داشته باشد. اگر دو کره را بر اساس اطلاعات به دست آمده از دو زلزله نگار مختلف رسم کنید، از تقاطع دو کره یک دایره به دست می آید. از آنجایی که کانون زلزله باید در سطح هر دو کره قرار گرفته باشد، محیط دایره ای که از تقاطع دو کره به دست می آید، نشان دهنده تمام کانون های ممکن برای زلزله مورد نظر است. از تقاطع کره سوم با این دایره فقط دو نقطه حاصل می شود که نشان دهنده کانون های محتمل برای زلزله است. از این دو نقطه یکی در سطح زمین قرار دارد و دیگری در هوا، با توجه به آنکه کانون زلزله همیشه در سطح زمین قرار دارد، نقطه موجود در هوا کنار گذاشته شده و نقطه موجود در سطح زمین نشان دهنده مکان واقعی کانون زلزله است.

درجه بندی دامنه و شدت زلزله :

در هنگام وقوع زلزله بارها با کلمه مقیاس ریشتر مواجه می شویم. شاید کلمه مقیاس مرکالی هم به گوشتان رسیده باشد هرچند که کمتر مورد استفاده قرار می گیرد. این دو مقیاس قدرت یک زلزله را از دو جنبه مختلف بیان کنند. از مقیاس ریشتر برای بیان بزرگی یک زمین لرزه یعنی مقدار انرژی آزاد شده طی یک زمین لرزه استفاده می شود. اطلاعات مورد نیاز برای محاسبه بزرگی زمین لرزه را از لرزه نگار به دست می آورند. مقیاس ریشتر لگاریتمی است یعنی افزایش یک واحد در مقیاس ریشتر نشان دهنده افزایش ده واحدی در دامنه موج است. به عبارت دیگر دامنه موج در زلزله 6 ریشتری ده برابر دامنه موج زلزله 5 ریشتری است و دامنه موج 7 ریشتر 100 برابر زلزله 5 ریشتری است. مقدار انرژی آزاد شده در زلزله 6 ریشتری 7/31 برابر زلزله 5 ریشتری است. بزرگترین زلزله ثبت شده 5/9 ریشتر شدت داشت، هرچند که مطمئناً زلزله های شدیدتری در تاریخ طولانی زمین روی داده است. عمده زلزله هایی که روی می دهد کمتر از 3 ریشتر قدرت دارند. زمین لرزه هایی که کمتر از ? ریشتر شدت داشته باشند، نمی توانند ویرانی های چندانی به بار آورند. زلزله هایی که 7 ریشتر یا بیشتر قدرت داشته باشند، زلزله های شدیدی محسوب می شوند.مقیاس ریشتر فقط یکی از عواملی است که تبعات یک زلزله را بیان می کند. قدرت تخریبی یک زلزله علاوه بر قدرت آن به ساختار زمین در منطقه مورد نظر و طراحی و مکان سازه های ساخت بشر بستگی دارد. میزان ویرانی های به بار آمده را معمولاً با مقیاس مرکالی بیان می کنند.دانشمندان می توانند درجه مقیاس ریشتر را درست پس از زمین لرزه و زمانی که امکان مقایسه اطلاعات از ایستگاه های مختلف زلزله نگاری به وجود آمده، معین کنند. اما درجه مرکالی را نمی توان به این سرعت مشخص کرد و لازم است که محققان زمانی کافی برای بررسی اتفاقاتی که حین زمین لرزه روی داده است، در اختیار داشته باشند. هنگامی که تصور دقیقی از میزان خسارت های وارده به عمل آمد، می توان درجه مرکالی مناسب را تخمین زد.

مقابله با زمین لرزه :

طی پنجاه سال اخیر اطلاعات زیادی در مورد زلزله کسب کرده و فرآیند وقوع آن را بهتر از پیش درک می کنیم، اما هنوز هم برای مقابله با آن کاری نمی توانیم انجام دهیم. زمین لرزه ها توسط فرآیندهای بنیادین و قدرتمند زمین شناختی که خارج از حیطه کنترل ما هستند، به وجود می آیند. این فرآیندها نسبتاً غیر قابل پیش بینی است، بنابراین در حال حاضر این امکان وجود ندارد که به مردم گفت دقیقاً چه وقت زلزله روی می دهد. این امواج زلزله ای ثبت شده، می تواند به ما اطلاع دهد که ارتعاش های بسیار قویتری در راه است، اما این اطلاعات می تواند فقط چند دقیقه پیش از وقوع زلزله به ما اخطار دهد. دانشمندان می توانند برپایه حرکت های صفحه ها در زمین و موقعیت منطقه های گسل، پیش بینی کنند که در کدام مناطق احتمال وقوع زلزله زیاد است. همچنین با تحقیق در تاریخ زمین لرزه های روی داده در منطقه مورد نظر، زمان احتمالی وقوع زلزله را پیش بینی کنند. با این همه این پیش بینی ها معمولاً بسیار ضعیف هستند. اما پیش بینی دانشمندان در مورد پس لرزه ها دقیق تر است. پس لرزه ها، لرزه هایی است که پس از زلزله اولیه روی می دهد. این پیش بینی ها براساس تحقیق های بسیار وسیعی که در مورد الگوهای پس لرزه ها انجام شده است، صورت می گیرد.زلزله شناسان در این مورد که چگونه زمین لرزه هایی که از یک گسل شروع شده اند، می توانند زلزله های دیگری را در گسل های متصل به یکدیگر به وجود آورند، پیش بینی های دقیقی انجام می دهند. زمینه دیگر تحقیق ارتباط بین بارهای الکتریکی و مغناطیسی در صخره ها و زمین لرزه است. بعضی از دانشمندان بر این عقیده اند که این میدان الکترومغناطیسی پیش از زمین لرزه تغییر می کند. علاوه بر این زلزله شناسان خروج گاز از زمین و تغییر شکل زمین را به عنوان علائم اخطار دهنده زمین لرزه می شناسند. با این همه در بسیاری از موارد نمی توان زمین لرزه را با دقت کافی پیش بینی کرد. پس برای مقابله با زمین لرزه چه کاری می توان انجام داد؟ عمده پیشرفت هایی که طی 50 سال گذشته حاصل شده است به آمادگی برای زلزله و مخصوصاً حیطه مهندسی عمران مربوط می شود. طی چند دهه اخیر استانداردهایی برای ساخت ساختمان ها در نظر گرفته شده است تا مقاومت آنها در برابر نیروی امواج زمین لرزه افزایش یابد. از استانداردهای جدید می توان به تقویت مصالح اشاره کرد. طراحی بناها به شیوه ای که از انعطاف پذیری لازم برای جذب ارتعاش ها برخوردار باشند بدون آنکه تخریب شوند،یکی دیگر از این روش هاست. طراحی ساختمان ها به شیوه ای که بتوانند این ضربه ها را بگیرند، مخصوصاً در مناطقی که زلزله خیز هستند، از اهمیت بسیاری برخوردار است.یکی دیگر از مولفه های آمادگی، آموزش مردم است. امروزه بسیاری از سامان های دولتی در اغلب کشورها دفترچه های راهنمایی منتشر می کنند که در آن چگونگی وقوع زلزله، راهنمایی هایی در مورد حفاظت خانه در برابر زلزله های احتمالی و فعالیت هایی که در زمان وقوع زلزله باید انجام داد، گردآوری شده است.

اما آیا می توان زمین لرزه ها را پیش بینی کرد؟

از لحاظ نظری کاملاً واضح است که اگر پارامترهای دخیل در تنش های پوسته زمین را بدانیم باید بتوانیم زلزله ها را پیش بینی کنیم. عقیده عمومی در دهه 1960 و 1970 این بود که با بررسی دقیق سابقه حرکات گسل ها، الگوهایی قابل پیش بینی به دست خواهند آمد. علاوه بر این تصور می شد که الگوهای غیرعادی کوتاه مدت رفتار حرکات گسل ها پیش از زمین لرزه قابل پیش بینی هستند و لذا می توان ساعت ها و روزها پیش از وقوع زمین لرزه به مردم اطلاع داد تا نواحی خطرناک را تخلیه کنند. اما امروز کاملاً روشن شده است که پیش بینی وقوع زمین لرزه بسیار پیچیده تر از آنی است که در ابتدا تصور می شد. امروزه می دانیم که زلزله ها چه از لحاظ زمانی و چه از لحاظ مکانی گه گاهی و پراکنده هستند. به جای تلاش کردن برای پیش بینی اینکه چه هنگامی شهرهای ما ویران خواهند شد، باید بر اطمینان یافتن از سالم ماندن آنها هنگام بروز زلزله متمرکز شد. یکی از موانع عمده در پیش بینی دقیق زلزله این است که گسل ها جدا از هم عمل نمی کنند. هنگامی که در یک گسل شکست رخ می دهد، تنش حاصل می تواند به گسل دیگری منتقل شود و این امر ادامه می یابد. تغییر کشش درون پوسته زمین الگوهایی با تغییر تدریجی دارد که دانشمندان اطلاع دقیقی از آن ندارند. با این حال تلاش ها برای پیش بینی زلزله ها همچنان از راه های مختلف ادامه پیدا کرده است. این تلاش ها در 20 سال گذشته عمدتاً در سه حوزه زیر متمرکز بوده است.

1- فرضیه پیش بینی درازمدت

در این حوزه دانشمندان از روش ها و رویکردهایی استفاده می کنند تا زمان تقریبی وقوع زمین لرزه ها را در آینده درازمدت تخمین بزنند. هیچ کدام از این روش ها نمی توانند لحظه دقیق زمانی یا شدت دقیق زلزله را معین کنند، اما می توانند تقریبی از آنها به دست دهند. بنابراین اطلاعات مفیدی در اختیار خواهد بود که احتیاطات لازم در مواردی مانند مقاوم سازی ساختار بناها انجام شود. برای مثال اگر به مهندسان گفته شود که ساختمان یا پلی را که طراحی می کنند باید بتواند ضربه ای حداکثر 5/0 گرم در 50 سال آینده تحمل کند، آنها ساختمان را طوری طراحی می کنند که این خصوصیت را دارا باشد. در پیش بینی درازمدت زلزله چند مسئله مورد بررسی قرار می گیرد.
الف- فاصله بازگشت
این فاصله به ما می گوید زلزله ها با چه تناوبی در یک گسل معین رخ می دهند، و حداکثر حرکات زمین که احتمال دارد در یک ناحیه معین و در یک دوره معین زمانی ایجاد کنند چقدر است. این فاصله با کسب کردن اطلاعات از چند منبع متفاوت به دست می آید: سوابق تاریخی زلزله ها، شواهد زمین شناختی (اثراتی که زلزله ها به جای می گذارند) و شواهد زمین سنجی (میزان کششی که در صخره ها به وجود می آید). براساس این فرضیه که زلزله های بزرگ در فواصل دوره های مشابه زمانی رخ می دهند، داده های حاصل از منابع بالا می توانند احتمال زلزله های آینده را پیش بینی کنند. با این حال دقت این پیش بینی درازمدت براساس فواصل بازگشت کاملاً محدود است زیرا وقایع درون یک گسل ممکن است به خاطر به وجود آمدن نیروهای جدید از دوره ای به دوره ای دیگر تفاوت کند.
ب- پیگیری تغییر شکل های زمین
یک راه دیگر پیش بینی زلزله ها اندازه گیری میزان جابه جایی زمین در طول یک گسل است. براساس همین روش «هری اف راید»، یک زلزله شناس کالیفرنیایی توانست پیش بینی کند که شوک بعدی در گسل سنت آندرئاس در کالیفرنیا حدود یکصد سال پس از زلزله بزرگ حاصل از این گسل در سال 19 06 به وجود می آید. اندازه گیری هایی که پیش از این زلزله انجام شده بود نشان داده بود که زمین به طور متوسط 65/0 متر در هر ده سال تحت کشش و جابه جایی قرار می گیرد. راید خاطرنشان کرد از آنجا که حداکثر جابه جایی در طول این گسل در زلزله 1 9 6، 5/6 متر بوده است بنابراین احتمالاً نتیجه یک قرن تجمع کشش در زمین است، زلزله ای با شدت مشابه زلزله 1906 در این گسل حدوداً 100 سال بعد رخ می دهد. امروزه ماهواره ها می توانند با فراهم آوری اطلاعات موقعیت دقیق (GPS) به زلزله شناسان امکان دهند میزان دقیق تغییر شکل پوسته زمین و محل دقیق آن را تعیین کنند. اندازه گیری های مکرر می تواند نشان دهد که آیا گسل در حال لغزش هست یا نه. بنابراین سرعت جابه جایی و میزان کشش در هر ناحیه گسل را می توان شناسایی کرد و پیش بینی های حتی بهتری را انجام داد.
ج- فرضیه شکاف لرزه ای
فرض اصلی در این مورد این است که زلزله های بزرگ گرایش دارند که هر بار در مکان مشابهی رخ دهند، اگر نمودار همه زلزله های بزرگ روی حد مرزهای صفحات زمین را داشته باشید، متوجه می شوید که آنها قطعات جداگانه مجاوری از یک حد مرز پر می کنند. شکاف لرزه ای (Seisemic gap) قطعه ای است که در آن برای مدتی طولانی زلزله ای رخ نداده است اما سابقه تاریخی یک زمین لرزه در آن ناحیه در گذشته وجود دارد.

2- یافتن گسل های جدید

یافتن گسل های جدید علاوه بر گسل های از قبل فعال، می تواند بر دانشمندان در پیش بینی بروز بالقوه زلزله ها در مکان های غیرمنتظر کمک کند. شواهد متعددی در یک منطقه می تواند به وجود گسل هایی دلالت کند که برای مدت های بسیاری در زمان های اخیر حرکت نکرده اند از جمله: این گسل ها در چشم انداز منطقه برجستگی های مستقیم طولانی ای تشکیل می دهند که می توانند توپوگرافی محلی و زهکشی طبیعی را تغییر دهند. بنابراین آنها زمین هایی اعوجاج یافته و دریاچه و حوضچه هایی تشکیل شده از انحنای زمین به سمت پایین به جای می گذارند. آنها می توانند محل ظهور چشمه ها باشند و به خاطر زهکشی طبیعی اغلب در طول مسیرشان از پوشش گیاهی انبوهی پوشیده شده اند. گسل ها را می توان به وسیله بررسی های انعکاس امواج شناسایی کرد، که از طریق ثبت امواج انعکاس یافته که یک شوک انفجاری از حد مرزهای لایه های پوسته زمین انجام می شود. صخره های موجود در طول خطوط گسل گاه به گاه به علت زلزله ها متلاشی می شوند. همه یخچال ها و نهرها در طول شکاف های حاصل به راه می افتند و ممکن است دره های بزرگی در طول یک گسل پوسته زمین به وجود آید.

3- علائم زلزله قریب الوقوع

انواع بسیار متفاوتی از فعالیت های کوتاه مدت، که طول آنها از چند روز تا چندسال تغییر می کند، قبل از زلزله های بزرگ ذکر شده اند. زلزله شناسان به دنبال الگوهای منظم در چنین پیش درآمدهای کوتاه مدتی هستند. از یک طرف امواج ضربه ای پیشینی (foreshocks)، مجموعه ای از لرزه های خفیف یا دوره های بدون لرزه پیش از زلزله های بزرگ گزارش شده اند، گرچه آنها لزوماً همیشه رخ نمی دهند. رفتارهای غیرعادی حیوانات نیز که به عنوان پیش بینی کننده زلزله ذکر شده است همیشگی نیست. از طرف دیگر تنش فوق العاده صخره ها که درشرف جابه جایی هستند باعث گرم شدن، تغییر شکل و انبساط آنها پیش از زلزله می شود و بنابراین شماری از تغییرات در پوسته زمین پیش از زلزله رخ می دهد و دانشمندان از وسائل گوناگونی برای اندازه گیری و ثبت این تغییرات استفاده می کنند؛ هر چند که هیچ کدام از این موارد نیز پیش بینی کننده قطعی و دقیق زلزله نیستند. از جمله این تغییرات اینها هستند. گاهی زمین ممکن است در حد چند میلی متر یا سانتی متر پیش از زلزله انحنا پیدا کند. انحنا سنج هایی (Tiltmeter) که در سوراخ های عمیق و با دقت حفر شده قرار داشته باشند، می توانند این پدیده را کشف کنند. تغییراتی در سرعت امواج لرزه ای در صخره های تحت تنش قرار گرفته نزدیک به گسل یافت شده است. شکاف های ذره بینی در صخره تحت تنش قرار گرفته نسبت به جهتی که تنش بر آنها وارد می شود به هم می پیوندند و این امر می تواند بر چگونگی عبور لرزه های خفیف از میان آنها تاثیر بگذارد. گاز رادون ممکن است از این شکاف های ریز تازه به وجود آمده در یک صخره تحت فشار ساطع شود. آبی که به درون صخره نفوذ می کند مواد شیمیایی از جمله رادون را از صخره جذب می کند و در نتیجه محتوای شیمیایی چنین موادی در آب چاه های منطقه افزایش می یابد. جریان یافتن آب های زیرزمینی به درون شکاف های صخره ها ممکن است باعث کاهش سطح سفره آب زیرزمینی منطقه شود. دربعضی از صخره های نزدیک به نقطه جابه جایی گسل ممکن است تغییر رسانایی الکتریکی ثبت شود.

منابع:
www.Cloudysky.ir
www.hupaa.com

 
نسخه چاپی