مترجم: حبيب الله عليخاني





 
 
این کار طراحی، اجرا و مفهوم سرهم پیوسته ی سیستم و مجتمع سازی یک سیستم جمع آوری داده ی بی سیم (برای برنامه هاي كاربردي تعیین موقعیت با دقت بسیار بالا)، را معرفی می‌کند.
نود(هاي) شبكه حسگر بي سيم مجهز به GPS از اجزای کم هزینه و خارج از قفسه ای ساخته شده اند که به طور خودگردان داده های L1 GPS را برای پردازش افتراقی GPS( DGPS) اطلاعات ماهواره ای خام، جمع آوری می‌کند. پردازش افتراقی( differential processing) بر روی زیرساخت پایان پروژه( back end infrastructure)، موقعیت و حرکت نسبی نودهای منفرد را در داخل شبکه ی دارای دقت زیر سانتیمتر، تعیین می‌کند. قدرت نفوذ در هماهنگ سازی زمان GPS جهانی، زمان بندی اندازه گیری هماهنگ وسعت شبکه، و بوجود آمدن چرخه ی وظیفه به همراه عملکرد بهینه شده ی توان و استحکام بالا در برابر شرایط محیطی خشن، باعث می‌شود تا نودهای حسگر معرفی شده، برای برنامه های کاربردی نظارت و نقشه برداری در مکان های دوردست، مناسب باشند. عملکرد خودکار، پوشش زمانی و فضایی بالا و هزینه ی پایین، این روش را نسبت به روش های سنتی که بسیار پرهزینه و زمان بر هستند، متمایز می‌کند. نمونه ی آزمایشی از سیستم جمع آوری داده بر پایه ی یک حالت توان پایین به صورت موفقیت آمیز اجرا و مورد آزمایش قرار گرفت. این سیستم آزمایشی به یک ماژول GPS موجود در بازار، مجهز بود.

مقدمه

تحقیقات اخیر نشان داد که رخداد مخرب جابجایی زمین در نواحی sin alpine، تهدید ایجاد شده در زیرساخت اقتصادی-اجتماعی را بالا برده است. نشانه هایی وجود دارد که فرایندهای مربوط به لایه ی منجمد دائمی اعماق زمین( permafrost) را عامل ایجاد کننده ی چنین جابجایی هایی در زمین، می‌دانند. اطلاعات در مورد فرایندهای تأثیرگذار بر روی پایداری زمین، برای شناسایی زمین های بالقوه ی خطرآفرین، مورد نظارت قرار گرفت؛ بنابراین لایه ی منجمد دائمی اعماق زمین( permafrost)، فرایندهای مربوط و اثرات آنها بر روی پایداری زمین، یکی از زمینه های فعال در تحقیقات علوم مربوط به زمین( Geo scientific research) است. برای این که قادر باشیم روابط پیچیده ی میان عوارض زمین، دوره های یخ زدن یا آب شدن یخ ها و پایداری زمین را مدل سازی کنیم، اطلاعات در زمینه ی تغییرات زمانی-مکانی زمین و محیط زیست اطراف آن، مورد نیاز است. سابقا این داده های زمین شناسی بوسیله ی عملیات های دستی یا تکنیک های نقشه برداری پر هزینه مانند اسکن لیزری( laser scanning) ، رادار با روزنه ی تداخلی مصنوعی( interferometric synthetic aperture radar) یا تجسس با وسایل هوایی بدون سرنشین انجام می‌شد. علاوه بر هزینه های هنگفت این روش ها، این روش ها تنها نواحی محدودی را پوشش می‌دهند یا در دوره ی زمانی کوتاه عمل بررسی را انجام می‌دهند. فقدان دقت مکانی-زمانی معمولا پردازش دینامیک زمین در مقیاس بزرگ، منشع و رابطه ی تغییرات با سایر فرایندهای زمین شناختی، را محدود می‌کند.
به خاطر دسترسی عمومی به سیستم GNSS( این سیستم عموما GPS نامیده می‌شود) و مخصوصا تفکیک قابلیت دسترسی انتخابی، پیشرفت های فنی و الگوریتمی ما را قادر به استفاده از دریافت کننده های تک فرکانس L1 GPS برای کاربردهای موقعیت یابی زمینیو فضایی، کرده است. خطای ذاتی در موقعیت یابی باGPS معمولا بوسیله ی اثرات جوی و تداخل چند راهه بوجود می‌آید که فقدان دقت را می‌توان با استفاده از دریافت کننده های دو فرکانسه ی L2 GPS کاهش داد؛ البته این دریافت کننده ها گران قیمت ترند ولی دقت بالایی دارند و از دو سیگنال ماهواره ای استفاده می‌کنند. به عنوان یک راه کار چاره اندیشانه، همانند سیستم توصیف شده در این مقاله، همین دقت را می‌توان با استفاده از پردازش افتراقی داده های خام ماهواره ی L1، بدست آورد. این نشان داده شده است که درصورت همراه بودن دوره های اندازه گیری طولانی با تکنیک GPS افتراقی( DGPS) می‌توان به دقت بسیار کمتر از دقت موقعیت یابی GPS معمولی( در حد چند متر) دست یافت. برخي از نویسندگان تأیید کردند که ایجاد دقت موقعیت یابی L1 در گستره ی زیر سانتیمتر امکان پذیر است.
در پروژه ی X-SENSE، یک همکاری تحقیقاتی میان مهندسین و محققین علوم زمین انجام شد. هدف این پروژه، توسعه ی یک تکنولوژی با حساسیت مناسب برای رصد با دقت بالای حرکت زمین بود. برای تهیه ی داده های زمانی-فضایی با کیفیت بالا که اجازه ی مدل سازی حرکت های متنوع زمین را به ما بدهند، پیشرفت اخیر در زمینه ی شبکه ی حسگر بی سیم و تکنولوژی GPS فوق الذکر مزیت زیادی دارد. برای این هدف، یک شبکه ی حسگر بی سیم( WSN) مجهز به دریافت کننده های GPS ارزان قیمت می‌تواند( با ترکیب با پردازش افتراقی GPS) مورد استفاده قرار می‌گیرد. مانیتورینگ جابجایی زمین دو نواحی کوهستانی با ارتفاع بالا به عنوان یک مثال مورد استفاده قرار گرفته است اما کاربردهای دیگر تجاری و علمی بسیاری وجود دارد مثلا سیستم های اخطار اولیه، کنترل ماشین، کشاورزی دقیق و مانیورینگ تجمعی زیرساخت. اگرچه نودهای WSN مجهز به دریافت کننده های GPS جدید نیستند، دقت محدود نوع متداول آنها( L1 GPS) باعث محدود شدن استفاده ی آنها در جاهایی می‌شود که خطاهای در حد چند متر قابل قبول نیست. درحالی که دقت مکان یابی می‌تواند بوسیله ی سایر تکنیک ها مانند trilateration با استفاده از شاخص های شدت سیگنال، بهبود یابد، دقت قابل دسترس هنوز به دقت( زیر سانتیمتر) لازمه برای کاربردها ی مربوط به مانیتورینگ حرکت های آهسته مانند خزش یخبندان اشاره شده در بالا، نرسیده است. در این مدل از کاربردها، دریافت کننده های ارزان قیمت L1 GPS با ترکیب شدن با تکنیک های پردازش DGPS( که در داخل دریافت کننده انجام می‌شود)، یا وسایل دریافت کننده ی L2 GPS مورد استفاده قرار می‌گیرد(دریافت کننده ی L2 GPS گران قیمت هستند). دریافت کننده های با قیمت پایین همچنین در WSNs ها برای تصدیق ساعت جهانی مورد استفاده قرار می‌گیرند زیرا شناخت زمان بندی با دقت برای اتصال بی سیم توان پایینی که انرژی بیش از حد انتشار نمی دهد، ضروری است.
بعلاوه، WSNs اغلب در محیط های دورافتاده که استقرار نودها و تشخیص حادثه های مد نظر با چالش مواجه است، گسترش می‌یابد. برای جلوگیری از نیاز به سخت افزارهای گران قیمت برای انجام چنین کارهایی، دریافت کننده های GPS مورد استفاده قرار می‌گیرد. در نهایت یک تلاش مشابه با روش مانیورینگ بحث شده در این کار توسط پروژه ی GGphi انجام شده است که بوسیله ی Galileo Joint حمایت مالی شده است. بدبختانه این مشخص نیست که چه میزان از اهداف بلند پروازانه ی که در این کار بیان شده است، محقق گردیده است. این کار یک توصیف از طراحی، اجرا و تجمیع سیستم سر هم پیوسته ارائه کرده است و همچنین ارزیابی سیستم ارزان قیمت جمع آوری داده ی بی سیم برای کاربردهای موقعیت یابی در زمان حال( real time) (بر پایه ی پردازش GPS افتراقی) انجام داده است. به هر حال جزئیات مربوط به گستره ی تفاوت دوتایی( double-differencing range) و الگوریتم پردازش فاز برنامه برای نود(هاي) شبكه حسگر بي سيم مجهز به GPS ارائه شده بود که از بحث این کار خارج است. با اینحال به دلیل نیاز به طراحی سیستم جمع آوری داده، این فرایند به طور خلاصه در بخش بعد اشاره شده است.
باقیمانده ی این مقاله به صورت زیر ساختاربندی شده است. بخش بعد مفهوم سیستم مانیتورینگ X-SENSE سرهم پیوسته( بر پایه ی GPS) معرفی می‌شود درحالی که سوم یک پیش زمینه ی مختصر در مورد DGPS و مفاهیم آن در طراحی سیستم را بیان می‌کند. بخش چهارم اجرای عملی نمونه ی آزمایشی از جمع آوری داده به طور جزئی بیان شده است و بخش پنجم، کارایی نمونه ی آزمایشی مورد ارزیابی قرار گرفته است. در نهایت بخش آخر، خلاصه ی مقاله را در بر دارد.

مفهوم سیستم سر هم پیوسته( end-to-end system concept)

یک مرور سطح بالا در مورد مفهوم سیستم X-SENSE در شکل 1 آورده شده است. برای انعطاف پذیری و سهولت نگهداری، سیستم به سه زیرسیستم تقسیم بندی شده است: جمع آوری داده، پردازش وجابجایی داده و کاربرد داده ها. تبادل داده در میان زیرسیستم های اختصاصی با استفاده از ارسال پیام رادیویی و ایجاد ارتباط با پروتکل های اینترنتی( IP) بوجود می‌آید. این زیرسیستم های اختصاصی به طور مختصر در این بخش توصیف می‌شوند.

جمع آوری داده:

همانگونه که در شکل 1 دیده می‌شود، سیستم جمع آوری داده شامل یک شبکه ی حسگر بی سیم با نودهای مجهز به GPS است که داده های ماهواره ای GPS را برای پردازش بر روی سرور بخش مدیریت، جمع آوری می‌کند. داده ها بدست آمده در هر نود از طریق ارتباط چندهاپه( multi-hop communication) به یک ایستگاه پایه منتقل می‌شود( این ایستگاه پایه مانند یک سینک معمولی برای شبکه، عمل می‌کند و به عنوان یک میانجی برای زیرساخت بخش مدیریتی تلقی می‌شود). نحوه ی به کار گرفتن سیستم جمع آوری داده بتفضیل در بخش چهارم توضیح داده شده است و ارزیابی کاربردهای آن در بخش پنجم مورد بحث قرار گرفته است.

جابجایی و پردازش داده

جابجایی داده شامل ذخیره سازی، پردازش و ارائه ی داده در فرمت های مناسب برای هر کاربری مورد نظر است. وظیفه های این زیرسیستم از تبادل ساده ی پایگاه داده تا محاسبات پیچیده ی موقعیت یابی و سرعت( با استفاده از شبکه ی پردازش DGPS) گسترش می‌یابد که این مبحث به طور مختصر در بخش سوم توضیح داده شده است. این ویژگی ها بوسیله ی یک ورژن ارتقاع یافته از GSN جریان موج متوسط، قابل حصول است، که همه ی آنها در یک ویژگی: ذخیره سازی داده در پایگاه های داده مرتبط، کاربرد توابع تبدیل در برای تبدیل اعداد قرائت شده سنسورها، و کاربرد داده ها از طریق یک میانجی وب، نهفته است. ساختار پلاگین( plug-in architecture) همچنین برای ماژول های پردازش متداول فراهم شده است و ویژگی های آنها نسبت به نیاز کاربردی، تغییر می‌کند.

کاربرد داده ها:

پس از جمع آوری داده ها از مکان های قرارگیری دوردست و پردازش مخصوص کاربردی، داده ها آشکارا در دسترس است تا یکپارچگی بیشتر برای استفاده کنندگان نهایی ایجاد گردد. برای مثال پروژه ی X-SENSE ،از اطلاعات موقعیت و سرعتی استفاده می‌کند که با سایر داده های حس شده، مانند دما و تصاویر با رزولیشن بالا آمیخته شده اند. و بوسیله ی آن قادر خواهیم بود مدل سازی جغرافیایی( Geoscientific) از جابجایی های زمین های کوهستانی( high-alpine) انجام دهیم.

ارتباطات:

نودهای داخل شبکه برای ارتباطات از پشته سازی پروتکلی شبکه ی بی سیم ( با پهنای باند و توان پایین) استفاده می‌کنند. پروتکل شبکه ی Dozer برای انتقال داده های چند هاپه ی قابل اطمینان از هر نود شبکه به یک ایستگاه پایه متمرکز، استفاده می‌کند که به عنوان یک سینک داده تلقی می‌شود. ایستگاه پایه به زیرساخت بخش مدیریتی از طریق یک لینک IP بی سیم با سرعت بالا، متصل است. سابقا داده ها که از شبکه ی توان پایین در ایستگاه پایه وارد می‌شد، با استفاده از یک سرویس تحویل TCP/IP قابل اطمینان به سیستم مدیریت GSN ارسال می‌گردند و داده ها در لایه ی کاربردی تأیید می‌شدند. سرور به محض از دست دادن اتصال، تلاش هایی را برای اتصال مجدد به ایستگاه پایه، انجام می‌دهد که این مسئله باعث پدید آمدن یک عملیات شبکه ای قابل اطمینان و خود گردانی می‌شود. برای ایجاد لینک های ارتباط رادیویی متناوب، ذخیره ساز غیر فرار( non-volatile storage) برروی هر نود به نحوی فرایند را هدایت می‌کند که از بین رفتن داده رخ ندهد.

پردازش GPS افتراقی

با پردازش GPS یک بخش انتگرالی در محاسبات نقش بازی می‌کند و بوسیله ی آن می‌توان با دقت زیر سانتیمتری موقعیت یابی و سرعت سنجی را از داده های جمع آوری شده، بدست آورد. در این بخش پردازش بر روی یک سطح بالا مورد بحث قرار گرفته است تا بوسیله ی آن انتخاب ها در طراحی سیستم بوجود آیند. به هر حال جزئیات GPS افتراقی خارج از قلمروی این مطالعه است.
معادلات مشاهده شده، رابطه ی میان داده های GPS خام که از دریافت کننده جمع آوری شده را با موقعیت های ماهواره ای نشان می‌دهند( معادلات 1 و 2)؛ که و به ترتیب نشاندهنده ی کد و اندازه گیری های فاز حامل هستند. بالانویس i و زیرنویس k به ترتیب به ماهواره های منفرد و آنتن ها ی دریافت کننده ی GPS اشاره دارند، در حالی که نشاندهنده ی گستره ی کاذب میان آنتن k و ماهواره ی i است.

تعدادی خطای ذاتی در موقعیت یابی GPS وجود دارد که می‌توان آنها را با روش تفاضلی دوتایی( double-differencing approach) محدود کرد. برای مثال خطای مربوط به ساعت دریافت کننده ( ) می‌تواند به طور تقریبی و با استفاده از تفاضل گیری( differencing ) از فازهای اندازه گیری شده از ماهواره ی n و ماهواره ی در یک فاصله ی زمانی معین، بدست آید. به طور مشابه، عملیات تفاضل گیری ثانویه تفاوت ساعت های ماهواره ای مشاهده شده بوسیله ی دریافت کننده ی r و را محاسبه می‌کند. این کار به طور تخمینی خطاهای موجود در ساعت های ماهواره(δ_k) را حذف می‌کند. عملیات تفاضل گیری دوم میان داده های جمع آوری شده بوسیله ی ایستگاه مرجع با مختصات شناخته شده و نود منفردی که موقعیت آن درحال تعیین است، انجام می‌شود. این کار نیازمند این است که نمونه های به یک روش هماهنگ جمع آوری شود تا از نمونه های غیر همپوشانی کننده و خلأهای داده ای( که اثر منفی بر روی دقت راه حل دارند)، جلوگیری شود. از این رو نمونه گیری هماهنگ در گستره ی شبکه از تمام دریافت کننده های GPS به عنوان بخشی از راه حل موقعیت یابی، ضروری است. این نیاز در بخش چهارم بیشتر توصیف می‌شود.
برای خطوط راهنمای زیر یک کیلومتر، خطاها بوجود آمده از تفرق های فضایی () و تروپوسفری ()را می‌توان حذف کرد. این کار را می‌توان با این فرض انجام داد که دریافت کننده های کافی در مجاورت، دارای همان خطا به دلیل خطاهای اتمسفری هستند. بنابراین معادلات (1) و (2) می‌تواند ساده سازی شود( معادلات (3) و (4))، که در اینجا و طول موج حامل و نشان دهنده ی یک عدد صحیح نامفهوم میان ماهواره ی i و آنتن دریافت کننده ی k است.

پردازش داده های GPS با استفاده از بسته ی نرم افزاری Bernese انجام می‌شود( با استفاده از یک الگوریتم تفاضلی دوتایی عادی با یک روش مربعات حداقل). برای بهبود کیفیت داده ها، داده های خام جمع آوری شده پیش پردازش می‌شوند( یعنی داده های پرت جدا می‌شوند، لغزش سیکل و ردیابی انجام می‌شود)؛ و راه حل های آماری و حرکتی با استفاده از داده های مرجع( که از مخزن سرویس GNSS بین المللی( IGS)بدست آمده) محاسبه می‌شود. یک راه حل حرکتی به یک راه حل در زمان های اندازه گیری( بر پایه ی آخرین داده های موجود)، اشاره دارد. راه حل های حرکتی به طور خاص به کاربری های درزمان حال( real-time) مانند سیستم های هشدار دهنده ی، مربوط می‌شوند. به عبارت دیگر، یک راه حل استاتیک تمام مثال های جمع آوری شده در زمینه ی یک روز خاص را ترکیب می‌کند تا راه حلی برای آن روز بدست آورد. راه حل های استاتیک به نتایج دقیق تری منتهی می‌شوند. و این مسئله موجب شده تا این روش به طور خاص برای جمع آوری نظام طویل المدت( این نظام طویل المدت برای مدل سازی علمی و مانیتورینگ یکپارچگی زیرساخت نیاز است)، مناسب باشد.
بر خلاف سایر کاربردهای GPS که به طور خاص تنها داد های GPS اندکی میان دوره های زمانی خاموش بودن دریافت کننده، جمع آوری می‌شوند، الگوریتم مورد استفاده، مجبور است نمونه گیری مداومی را از داده های ماهواره ای برای دوره ی زمانی طولانی، انجام دهد. یک تجزیه و تحلیل حساس به دریافت کننده ی GPS (با وظیفه ی چرخه ای) نشان داد که مدت زمان منع اندازه گیری 3 ساعته ضروری است و برای بدست آوردن دقت کمتر از 5 میلیمتری برای این الگوریتم مناسب است. منع های اندازه گیری طولانی تر از این مقدار، دارای بهسازی مناسبی نمی باشد. بطور قابل توجه، فرکانس نمونه گیری اگر در حدود 10 mHz نگه داشته شود، درای اثر ناچیزی بر روی دقت راه حل دارد اما تنها رزولیشن موقت( temporal resolution) را افزایش می‌دهد. به هر حال با استفاده از الگوریتم تفاضلی دوتایی، افزایش فرکانس نمونه برداری با کوتاه کردن زمان منع اندازه گیری، جایگزین نخواهد شد و بدین وسیله در مصرف انرژی صرفه جویی می‌شود. بلکه یک فرکانس نمونه برداری بالاتر میزان بودجه بندی انرژی کلی را افزایش می‌دهد زیرا داده های بیشتری باید از طریق امواج رادیویی انتقال یابند.
به طور خلاصه باید گفت که الگوریتم پردازش نیازهای ویژه ای بسیاری را در زمینه ی سیستم جمع آوری اطلاعات، ایجاد می‌کند. مسئله ی مهم تر این است که نیاز برای نمونه برداری هماهنگ در گستره ی شبکه و موانع اندازه گیری طولانی مدت، نیازمند توجه خاص می‌باشد. به هر حال به جای هماهنگ کردن نودهای شبکه با استفاده از پروتکل های هماهنگ کننده ی خاص، ما سودمند بودن اطلاعات زمانی دقیق را که بوسیله ی دریافت کننده های GPS مهیا می‌شوند، را برای این کار ذکر می‌کنیم( همانگونه که دربخش چهار م توصیف شده است). مصرف بالای انرژی که از موانع اندازه گیری طویل المدت حاصل می‌شود، بوسیله ی استفاده ی دوره ای از دریافت کننده ی GPS تشنه ی توان( power-hungry GPS receiver) کاهش می‌یابد. و بدین وسیله میزان مصرف توان در این دریافت کننده ها کاهش می‌یابد. روش صرفه جویی در مصرف انرژی در بخش پنجم توصیف شده است.

پیاده سازی سیستم جمع آوری داده

ساختار:

ساختار نود جمع آوری اطلاعات بی سیم مجهز به GPS( که از این به بعد به آن نود می‌گوییم) در شکل 2 آورده شده است. نود شامل یک ماژول حسگر بی سیم با توان فوق العاده پایین و یک ماژول دریافت کننده ی L1 GPS تک فرکانسه، ارزان قیمت و خارج قفسه ای ( off-the-shelf) است.
نود Tiny 184 شامل یک میکروکنترلر با توان فوق اعاده پایین و بی سیم مدل تگزاس اينسترومنت MSP430 و یک دستگاه گیرنده-فرستنده بی سیم و با توان فوق العاده پایین مدل سماتك 868 است. این میکروکنترلر دارای برنامه ی فلش 92 kB، RAM 8kB و یک تعداد از اتصالات خارجی است شامل GPIO، UART، SPI و است. تمام نرم افزارهای کاربردی در نود با TinyOS 2.1 اجرا می‌شوند.
میکروکنترلر نود استدلال های کاربردی و ارتباطات با شبکه ی حسگر بی سیم را با استفاده از گیرنده-فرستنده ی بی سیم آن-برد، انجام می‌دهد. این بخش همچنین به یک وسیله ی ذخیره سازی خارجی ( SD-card) متصل است تا اندازه گیری های داده ای در آن ذخیره سازی شود. سطح مشترک میان میکروکنترلر و ماژول GPS شامل دو خط کنترل و یک اتصال و سطح مشترک پیکربندی، است. استفاده از وقفه ی پالس زمانی( time-pulse interrupt) و اتصال سری به طور خلاصه در بخش بعدی آورده شده است. سیگنال کنترل ثانویه قادر است تا توان ماژول GPS را از طریق یک ضامن توان قطع و وصل کند.

نمونه ی آزمایشی

پیاده سازی نمونه ی آزمایشی در شکل 3 نشان داده شده است. تمام اجزای سیستم در یک محفظه ی آلومینیومی ریخته گری شده ضد آب قرار داده شده اند تا از آنها در برابر شرایط محیطی نامساعد، محافظت گردد. این سیستم به گونه ای طراحی شده است که می‌تواند با باطری کار کند. بنابراین عمر مفید نود عمدتا به طول زمان موانع اندازه گیری و فرکانس نمونه گیری( یعنی تعداد کل نمونه های گرفته شده – بخش پنجم را ببینید) بستگی دارد. اگر عمر مفید مورد نیاز نتواند بوسیله ی یک اندازه ی باطری ممکنه، بوجود آید، این سیستم می‌تواند بوسیله ی یک سیستم تولید کننده ی انرژی همراه باشد تا بتوان عملیات مداوم را داشته باشیم. پذیرش سیگنال ماهواره ای مداوم و گستره ی ارتباطی بی سیم گسترده( حتی در شرایط محیطی نامناسب) بوسیله ی ثابت کردن سیستم بر روی یک دیرک و بعد از آن استفاده از یک آنتن، میسر می‌شود. ابهام بوجود آمده در حالت تغییر مکان دیرک را می‌توان با سنسورهای اینرسی متصل شده به میکروکنترلر حل نمود.

ماژول GPS

ماژول GPS یک دریافت کننده ی L1 GPS تجاری است که مخصوص کاربردهای زمان بندی دقیق است. علاوه بر کاربرد متداول موقعیت یابی GPS استاندارد، این ماژول داده های اندازه گیری ماهواره ای خام( یعنی داده های اصلاح نشده) را برای گروه ماهواره های قابل رویت، ارسال می‌کنند. این ماژول، یک رابط UART را ساپورت می‌کند که در آن یک پروتکل دوتایی UBX برای انتقال فرمان ها و داده ها بین میکروکنترلر و ماژول استفاده شده است. علاوه بر این، این قطعه یک پالس زمانی تک پایای و هماهنگ UTC با قابلیت تنظیم پهنای و فرکانس پالس مهیا کرده است.
ماژول GPS دو حالت بازیابی اندازه گیری (یعنی polled و periodic) را تنظیم می‌کند. حالت polled نیازمند این است که میکروکنترلر بطور مستقیم به اندازه گیری پاسخ دهد( با استفاده از یک بسته ی پاسخ دهی که دارای بار مفید با طول صفر است؛ درحالی که وقتی ماژول در حالت دوره ای است، داده ها را در فواصل زمانی تعریف شده( با توجه به پالس زمانی) ارسال می‌گردند. وقتی ماژول روشن است، تلاش می‌کند تا ماهواره های موجود را جستجو و هماهنگ کند. سابقا هماهنگ سازی بدست می‌آمد و داده های زودگذر به طور موفقیت آمیز دانلود و ثبت می‌شدند( ماژول می‌تواند در دو حالت polled و periodic کار کند). در موردی که هیچ ماهواره ی وجود نداشته باشد، یک بار مفید با طول صفر در حالت polled ، ارسال می‌شد؛ و هیچ داده ای به حالت periodic باز نمی گشت. استفاده از حالت های بازیابی و پالس های زمانی در بخش بعدی توصیف شده است.

ضبط داده ها

این بخش، برروی نیاز به جمع آوری هماهنگ داده در گستره ی شبکه بحث می‌کنیم. به هر حال به جای وابسته بودن به یک پروتکل هماهنگ کننده ی شبکه ی خاص، ما مزیت اطلاعات زمانی دقیق را انتخاب کردیم که بوسیله ی ماژول های GPS و یک زمانبدی اندازه گیری منتشر شده به تمام نودها، ایجاد می‌شود. صرفنظر از کاهش پیچیدگی کاربردی، و امکان ایجاد سایر بهینه سازی ها، اطلاعات زمانی دقیق در هر نود باعث ایجاد یک عملیات هماهنگ سیکلی می‌شود.
این مسئله اجازه می‌دهد تا هر تعدادی از نودهای توزیع شده در فضا در کنار هم کار کنند و به صورت بهینه هماهنگ شوند حتی در طی شرایطی که از لحاظ رادویی اتصال ندارند( این مسئله برای یک عملیات قابل اطمینان ضروری است.
برای شروع و به پایان رساندن موانع اندازه گیری در زمان هماهنگ شده ی تصحیح شده در گستره ی شبکه، دانستن زمان مطلق در داخل میکروکنترلر ضروری است. این نیاز است که دقت زمانی در حد ثانیه باشد زیرا ماژول GPS ممکن است نیازمند چند ثانیه زمان برای هماهنگ شدن با ماهواره ها داشته باشد. این مسئله مخصوصا وقتی درست است که ماژول GPS برای بیش از 4 ساعت در میان دوره های مشاهده شده، خاموش باشد که این مسئله باعث می‌شود داده های زودگذر( یک روزه) به روز رسانی شوند. به هر حال اسیلاتور کوارتزی ساعت داخلی میکروکنترلر( RTC) تابع رانش است که این مسئله مفید بودن آن را برای اهداف برنامه ریزی در دوره های زمانی طولانی، تحت شعاع قرار می‌دهد. به جای اینکه تنها به RTC تکیه کنیم، اطلاعات زمانی دقیق بوسیله ی ماژول GPS قدرتمند تر می‌شوند. میکروکنترلر به طور دوره ای از ماژول GPS نظر خواهی می‌کند تا برچسب زمانی UTC برای موانع اندازه گیری آن را تنظیم کند. با توجه به توصیفات اول، توالی زمان بندی بعد از انجام نمونه برداری از GPS ، به طور مختصر توصیف شده اند.
هر زمان، نود روشن است، یا در طی سیکل ریست شدن، میکروکنترلر به طور مختصر، ماژولGPS را قادر می‌سازد، از ضامن توان استفاده کند و زمانUTC کنونی را با استفاده از حالت زمانی polled تقاضا کند( شکل 4(a-i)). وقتی ماژول GPS همزمان سازی ماهواره ای را بدست می‌آورد، زمان UTCکنونی بازگشت داده می‌شود( شکل 4(a-ii)). از آنجایی که یک زمان بندی اندازه گیری در واحد ساعت فرض شده است، مقادیر سال، ماه و روز در نظر گرفته نشده است. میکروکنترلر سپس زمان را تا شروع مانع اندازه گیری بعدی، محاسبه می‌کند، یک تایمر تک شاته( one-shot timer) داخلی ایجاد می‌شود و ماژول GPS غیر فعال می‌شود. وقتی رویداد تیمر به انتها رسد، نشناندهنده ی این است که یک مانه اندازه گیری جدید شروع شده است( شکل 4(a-iii))، و میکروکنترلر دوباره ماژول GPS را فعال می‌سازد و آن را به حالتی در می‌آورد که نمونه گیری از داده های ماهواره ای را شروع کند.
با قرارگیری پیش تعیین شده ی نود در میدان پویش کننده ی با دوره ی طولانی از زمان( چند ماه تا چند سال)، خطاهای زمان بندی کوچک در شروع هر مانع اندازه گیری می‌تواند سرانجام، باعث شود نمونه برداری در خارج از زمان بندی انجام شود. برای جلوگیری از رانش اندازه گیری ( measurement drift) ، میکروکنترلر تایمر تک شاته را در شروع هر مانع اندازه گیری، دوباره تنظیم می‌کند که این مسئله نشاندهنده ی پایان یافتن مانع جریان( شکل 4( a-iv)) است. پس از خارج شدن، زمان UTC یکبار دیگر، پیش از خاموش شدن ماژول GPS خواسته می‌شود و تایمر دوباره برنامه ریزی می‌شود که این مسئله باعث راه افتادن شروع مانع بعدی می‌شود. این فرایند برای همیشه تکرار می‌شود و اندازه گیری دوره ای، هماهنگ در سرتاسر شبکه، مداوم و دقیق را با توجه به زمان بندی معین( با هزینه ی حداقل)، تضمین می‌کند.
همانگونه که قبلا اشاره شد، ماژول GPS یک پالس زمانی تک پایا( monostable time-pulse) (به عنوان یک وقفه داخلی) ایجاد می‌کند. ماژول GPS به حالتی پیکربندی می‌کند تا وجود قریب الوقوع داده های جدید را بوسیله ی راه اندازی وقفه، نشان دهد. یکبار دیگر ماژول هماهنگی ماهواره ای را بدست می‌آورد، پالس زمانی همواره در داخل چند ده نانوثانیه در زمان UTC( برای تمام گره های شبکه، صرفنظر از مکان قرارگیری فیزیکی)، هماهنگ می‌شود. و بدین وسیله قابلیت هماهنگ سازی زمان در گستره ی شبکه با نمونه گیری GPS در کل شبکه، ایجاد می‌گردد. فرایند اندازه گیری با استفاده از حالت بازیابی periodic داده، بتفضیل در شکل 4(b) نشان داده شده است و در ادامه شرح داده شده است.
ماژول GPS به گونه ای طراحی شد است که پالس زمانی در زمان کوتاهی پیش از اینکه داده های GPS دوره ای در اتصال UART قرار دارند، راه بیندازد( همانگونه که در شکل 4(b-v) نشان داده شده است). وقتی وقفه در میکروکنترلر دریافت می‌شود، اتصال سری بوجود می‌آید و تجزیه کننده ی UBX مقدار دهی اولیه می‌شود، و برای دریافت داده های اندازه گیری شده از GPS آماده می‌گردد( شکل 4( b-vi)). پس از اینکه داده ها از طریق اتصال سری دریافت شود و با مجموع متقابل CRC( CRC checksum) تصدیق شوند، UART تا زمانی که وقفه ی بعدی یک گروه جدید از داده های ماهواره ای خام را اعلام کند، غیر فعال می‌شود. در نهایت داده ها در بسته های مناسب بازسازی می‌شوند و با استفاده از پروتکل شبکه ی Dozer انتقال می‌یابند.
وقفه ی مشتق شده نه تنها نمونه برداری خودگردان و هماهنگ را در کل شبکه ایجاد می‌کند، بلکه همچنین استفاده از میکروکنترلر را بهینه سازی می‌کند. به جای انتظار چرخشی دوره ای برای داده ها، میکروکنترلر می‌تواند وظایف دیگری مانند نمونه برداری از حسگرهای کاربردی ویژه، را انجام دهد. علاوه براین، حالت های صرفه جویی در مصرف انرژی برای میکروکنترلر می‌تواند به طور کامل مورد استفاده قرار گیرد و بوسیله ی آن میزان مصرف انرژی کاهش یابد.
برای مهیا نمودن یک راه حل موقعیت یابی کاملا خودکار برای یک گستره ی وسیع از کاربردها، یک زمانبندی اندازه گیری قابل تنظیم بوسیله ی استفاده کننده به کار گرفته شد. بسته به نیازهای کاربرد، تعداد و مدت زمان موانع اندازه گیری به طور روزانه، قابل تعریف است. تمام موانع به طور مستقیم با زمان UTC هم تراز می‌گردد که زمان اندازه گیری موانع و زمان نمونه برداری بوسیله ی استفاده کننده قابل تنظیم است. برای موارد استفاده ی فرض شده در این مقاله، مثلا مونیتورینگ و ردیابی روزانه ی نوسانات نسبتا آهسته در حرکت زمین در مکان های با ارتفاع زیاد، این برنامه های زمان بندی می‌تواند ساده باشد. در این مورد، یک اندازه گیری مانع در طی 3 ساعت در هر روز برای موقعیت یابی با دقت نسبی زیر سانتیمتر، مورد استفاده قرار گرفت. برای کاربردهایی که در آنها نیاز به رزولیشن های زمانی بالاتر وجود دارد مانند ثبت مکانیک حرکت به طور روزانه ، روش های اندازه گیری دقیق تر بر اساس یک چنین موانع چند ساعته( multi-hour capturing) ای می‌تواند طراحی شود.