دو توجيه جديد براي پديده فتوالكتريك
در سال 1887 هانريش هرتز در حين انجام آزمايشي متوجه شد كه تاباندن نور با طول موجهاي كوتاه مانند امواج فرابنفش به كلاهك فلزي يك الكتروسكوپ كه داراي بار الكتريكي منفي است ، باعث تخليه الكتريكي الكتروسكوپ ميشود . وي با انجام آزمايشهاي بعدي نشان داد كه تخليه الكتروسكوپ به خاطر جدا شدن الكترون از سطح كلاهك فلزي آن است . اين پديده را فتوالكتريك مينامند . نخستين برخوردها براي توجيه اثر فوتوالكتريك از ديدگاه الكترومغناطيس كلاسيك صورت گرفت كه توانايي توجيه آن را نداشت . سپس انيشتين اين پديده را با توجه به ديدگاه كوانتومي پلانك توجيه كرد .
نارسايي الكترومغناطيس كلاسيك در توجيه اثر فتوالكتريك :
پس از كشف پديده فوتوالكتريك توسط هرتز ، وقتي كه فيزيكدانان به تكرار اين آزمايش پرداختند ، با كمال تعجب متوجه شدند كه شدت نور ، تاثيري بر انرژي الكترونهاي صادر شده ندارد . اما تغيير طول موج نور ، بر انرژي الكترونها موثر است ، مثلا سرعتي كه الكترونها بر اثر نور آبي بدست ميآورند ، بيشتر از سرعتي است كه بر اثر تابش نور زرد به دست ميآورند .همچنين تعداد الكترونهايي كه در نور آبي با شدت كمتر از سطح فلز جدا ميشوند ، كمتر از تعداد الكترونهايي است كه بر اثر نور زرد شديد صادر ميشوند ، اما باز هم سرعت الكترونهايي كه بر اثر نور آبي صادر ميشوند ، بيشتر از سرعت الكترونهايي است كه توسط نور زرد صادر ميشوند . علاوه بر آن نور قرمز ، هر قدر هم كه شديد باشد ، نميتواند از سطح بعضي از فلزات الكترون جدا كند .
الكترونهاي ظرفيت در داخل فلز آزادي حركت دارند ، اما به فلز مقيد هستند . براي جدا كردن آنها از سطح فلز بايستي انرژي به اندازهاي باشد كه بتواند بر انرژي بستگي چيره شود ، در صورتي كه اين انرژي كمتر از مقدار لازم باشد ، نميتواند الكترون را از سطح فلز جدا كند . طبق نظريه الكترومغناطيس كلاسيك ، انرژي الكترومغناطيسي كميتي پيوسته است ، لذا هر تابشي ميبايست در الكترون ذخيره و با انرژي قديمي كه الكترون داشت ، جمع ميشد تا زماني كه انرژي مورد نياز تامين گردد و الكترون از سطح فلز جدا شود . از طرف ديگر چون مقدار انرژي مقيد الكترونهاي داخل فلز ، برابر هستند اگر انرژي لازم براي جدا شدن آنها به اندازه كافي ميرسيد ، ميبايست با جدا شدن يك الكترون از سطح فلز ، تعداد زيادي الكترون آزاد شود .همچنين با توجه به اينكه انرژي كميتي پيوسته است ، ميبايست انرژي تابشي بين الكترونهاي آزاد ، توزيع ميشد تا هنگامي كه انرژي همه الكترونها به ميزان لازم نميرسيد ، نميبايست انتظار جدا شدن الكتروني را داشته باشيم ، به عبارت ديگر نميبايست به محض تابش ، شاهد جدا شدن الكترون از سطح فلز بود .
توجيه كوانتومي پديده فتوالكتريك توسط انيشتين :
انيشتين در سال 1905 با استفاده از نظريه كوانتومي انرژي ، پديده فتوالكتريك را توضيح داد . بنابر نظريه كوانتومي ، امواج الكترومغناطيسي كه به ظاهر پيوستهاند ، كوانتومي ميباشند . اين كوانتومهاي انرژي را كه فوتون مينامند ، از رابطه پلانك تبعيت ميكنند . بنابر نظريه كوانتومي پلانك ، يك باريكه نور با بسامد ν شامل تعدادي فوتون هاي ذره گونه است كه هر يك داراي انرژي E=hν ميباشد . يك فوتون تنها ميتواند با يك الكترون در سطح فلز برهمكنش كند . اين فوتون نميتواند انرژي خود را بين چندين الكترون تقسيم كند . چون فوتونها با سرعت نور حركت ميكنند ، بر اساس نظريه نسبيت ، بايد داراي جرم حالت سكون صفر باشند و تمام انرژي آنها جنبشي است . هنگامي كه ذرهاي با جرم حالت سكون صفر از حركت باز ميماند ، موجوديت آن از بين ميرود و تنها زماني وجود دارد كه با سرعت نور حركت كند و از اين رو وقتي فوتوني با يك الكترون مقيد در سطح فلز برخورد ميكند و پس از آن ديگر با سرعت منحصر به فرد نور C حركت نميكند ، تمام انرژي hν خود را به الكتروني كه با آن برخورد كرده است ميدهد و اگر انرژي كه الكترون مقيد از فوتون ميگيرد ، از انرژي بستگي به سطح فلز بيشتر باشد ، زيادي انرژي به صورت انرژي جنبشي فتوالكترون در ميآيد . اگر فرض كنيم انرژي بستگي الكترون بر سطح فلز W باشد كه اين مقدار برابر باشد با انرژي W=hν ، آنگاه يك فوتون با انرژي hν زماني ميتواند الكترون را از سطح فلز جدا كند كه :
hν≥W=hν0
چنانچه انرژي فوتون فرودي بيشتر از انرژي بستگي الكترون باشد ، مابقي انرژي به صورت انرژي جنبشي الكترون ظاهر مي شود و خواهيم داشت .
hν=1/2m0v²+hν0
كه در آن Ee=1/2m0v² انرژي جنبشي الكترون ، پس از جدا شدن از سطح فلز است . به همين دليل اگر انرژي نور تابشي كمتر از انرژي بستگي الكترون باشد ، با هر شدتي كه بر سطح فلز بتابد ، پديده فتوالكتريك روي نميدهد . علاوه بر آن به محض رسيدن فوتون با انرژي كافي بر سطح فلز ، گسيل فتوالكتريك بيدرنگ اتفاق ميافتد .
هر چند در اينجا بحث در مورد اثر تابش بر سطح فلز بود ، اما اين اثر به فلزات محدود نميشود . به طور كلي هر گاه فوتوني با انرژي كافي به الكترون مقيد برخورد كند ، الكترون را از اتم جدا ميكند و اتم يونيزه ميشود . با توجيه انيشتين شدت موج الكترومغناطيسي در نظريه مكانيك كوانتوم مفهوم جديدي پيدا كرد . در مكانيك كوانتوم شدت موج تكفام الكترومغناطيسي برابر است با حاصلضرب انرژي هر فوتون در تعداد فوتونهايي كه در واحد زمان از واحد سطح عبور ميكنند .
بررسي اثر فتوالكتريك :
براي بررسي بيشتر پديده فتوالكتريك ، ميتوان دستگاهي مطابق شكل زير تهيه نمود و دست به آزمايش زد . اين دستگاه شامل دو الكترود A , B است كه داخل يك محفظه خلاء قرار دارند . اين دو الكترود به يك منبع ولتاژ قابل تنظيم در خارج محفظه وصل شدهاند .
اگر بين اين دو الكترود ، اختلاف پتانسيل برقرار شود ، هيچ جرياني در مدار برقرار نميشود ، حتي اگر ولتاژ خيلي بالا باشد . ولي اگر نور تكفام با بسامد مناسب بر الكترود A به تابانيم ، جريان در مدار برقرار ميشود و افزايش ولتاژ باعث افزايش شدت جريان در مدار خواهد شد . اين موضوع نشان ميدهد كه نور تابيده روي الكترود A باعث كنده شدن الكترون از آن ميشود و ولتاژ بين دو الكترود نيز ( با ايجاد ميدان الكتريكي ) الكترونهاي آزاد شده را از كنار الكترود A به الكترود B ميرساند و جريان در مدار برقرار ميشود . طبق آزمايش وقتي نور با بسامد مناسب به الكترود A بتابد در مدار جريان برقرار ميشود بدون آنكه نياز باشد اختلاف پتانسيلي بين دو الكترود برقرار گردد . با افزايش ولتاژ شدت جريان نيز افزايش مييابد . در نهايت اينكه توجيه انيشتين چندان مورد پذيرش پلانك نبود ، ولي توضيح انيشتين در مورد كوانتومي بودن انرژي ، زمينه پذيرش ذرهاي بودن نور را فراهم آورد .
و حال اين سوال مهم مطرح ميشود كه چرا توجيه انيشتين چندان مورد پذيرش پلانك نبود ؟
علت آن ميتواند اين باشد كه چگالي الكترون ظرفيت يا الكترون آزاد بر سطح فلز و حتي چگالي ذرات فرضي فوتون در فضا خيلي كم است و احتمال اينكه اين ذرات با الكترونها تصادم داشته باشند در حد صفر است . هر چند كه در غير فلزات اين مشكل حادتر ميشود و علت آن اين است كه چنين به نظر ميرسد الكترونهاي ظرفيت با سرعت زيادي پيرامون هسته در حال چرخش هستند كه اين موضوع باعث كمتر شدن احتمال برخورد مابين فوتون و الكترون ميشود .
توجيه جديد اول :
ابتدا ميبايست مبحث اصل تبادل انرژي كوانتومي توسط لايهها و زير لايهها در اتمها را مطالعه فرماييد . به طور خلاصه موج الكترومغناطيس توليد شده توسط يك لايه يا يك زير لايه از يك اتم ( تراز انرژي ) ، فقط قابل جذب توسط همان لايه يا زير لايه از اتم ديگر است . به بيان ديگر موج الكترومغناطيس توليد شده توسط يك لايه يا يك زير لايه از يك اتم ، فقط در همان لايه يا زير لايه از اتم ديگر القا يا شارژ ميشود . يعني شكل زير :
يك لايه يا يك زير لايه نميتواند امواج گسيل شده توسط لايهها يا زير لايههاي نا همسان از اتم ديگري را جذب كند . همانطور كه از شكل فوق برميآيد تبادل انرژي فقط در لايهها و زير لايههاي همسان و مشابه مجاز و عملي است . علت اصلي اين موضوع مربوط به دو پديده مشاهده شده ، يعني طيف نشري خطي و طيف جذبي عناصر است .
در واقع هم در طيف گسيلي و هم در طيف جذبي هر عنصر ، طول موجهاي معيني وجود دارد كه از ويژگيهاي مشخصه آن عنصر است . طيفهاي گسيلي و جذبي هيچ دو عنصري مثل هم نيست . اتم هر عنصر دقيقا همان طول موجهايي را جذب ميكند كه اگر دماي آن به اندازه كافي بالا رود و يا بههر صورت ديگر برانگيخته شود ، آنها را تابش ميكند .
با دانستن اين موضوع مهم ، فلزي را در نظر ميگيريم كه در مقابل تابش نور مستقيم خورشيد قرار گرفته است . مسلما اين فلز محدوده مشخصي از نور خورشيد را منعكس و توسط چشم ما ديده ميشود ، ولي محدوده ديگري توسط فلز جذب و باعث بالا رفتن حرارت آن ميشود ، اينك اگر اين فلز را به محيط كاملا تاريك انتقال دهيم ، توسط چشم ما غير قابل رويت خواهد بود ، ولي ميتوانيم حرارت آن را با دستمان حس كنيم و اگر با چشمي مادون قرمز به آن بنگريم ، فلز كاملا قابل رويت بوده و حتي ميتوانيم حرارت آن را بسنجيم . اين پديده بيانگر اين است كه انرژي جذب شده در لايهها و زير لايهها در اتمها ميتواند به لايهها و زير لايههاي ديگر از همان اتم انتقال يابد . به طور مثال ما ميتوانيم با تابش شديد يك ليزر تكفام با نور آبي يا هر طيف ديگري بر سطح يك فلز يا عنصر ، طيفهايي همچون مادون قرمز و قرمز و حتي نور سفيد توليد كنيم و اين بستگي به حرارت ايجاد شده خواهد داشت نه رنگ يا طيف ليزر تابيده شده . در واقع اگر ما لايهها و زير لايهها را همانند سيم لولههاي تو در تو در نظر بگيريم ، ميتوانيم چنين استنباط كنيم كه ميدانهاي الكترومغناطيسي القا شده در هر سيم پيچ ، ميتواند توسط آن سيم پيچ به سيم پيچهاي ديگر نيز القا شود ( انتقال يابد ) ، به شكل زير توجه نماييد .
هر لايه يا زير لايه اتم به منزله يك سلف ( سيم لوله ) يا يك خازن ميتواند انرژي مشخصي را به صورت ميدان الكتريكي ( پتانسيل الكترومغناطيسي ) در خود جذب و ذخيره كند كه با افزايش آن ، يكجا و به صورت يك بسته ( كوانتوم ) از انرژي دفع ميشود كه در اين حالت هرقدر به هسته و مركز اتم نزديك شويم بر شدت ميدان الكتريكي افزوده و هر چه از مركز هسته فاصله بگيريم از شدت ميدان الكتريكي كاسته ميشود . پس ميتوان نتيجه گرفت كه كوانتومهاي انرژي دفع شده از لايهها و زير لايههاي پايين اتم ، پر انرژيتر از كوانتومهاي انرژي دفع شده از لايهها و زيرلايههاي بالاتر اتم است . آنچه كه اتفاق ميافتد اين است كه امواج الكترومغناطيسي بسته به فركانسشان در لايه و يا زير لايه مربوطه اتم القا و شارژ ميشوند و باعث بالا رفتن پتانسيل ميدان الكتريكي در لايه يا زير لايه ميشوند كه اين افزايش پتانسيل باعث شتاب الكترونها در صورت وجود در لايه و زير لايهها ميشود كه اگر اين انرژي و شتاب الكترون به اندازه كافي باشد ، الكترون به مدار بالاتر جهش ميكند كه در نهايت با تخليه انرژي به صورت ميادين و امواج الكترومغناطيسي ، الكترون به مدار قبلي تنزل ميكند . در واقع بجاي اينكه E=hν را مربوط به انرژي جنبشي ذره مادي به نام فوتون تعبير كنيم ، ميتوانيم آن را انرژي پتانسيل الكتريكي ذخيره شده در لايه يا زير لايه اتم بدانيم كه با افزايش فركانس موج يا شدت ميدان الكتريكي لايه و زير لايه رابطه مستقيم داشته ولي با افزايش محيط مدار ، يعني افزايش شعاع مدار رابطه معكوس دارد . پس ميتوان نتيجه گرفت كه ميادين الكتريكي به صورت دايرهوار پيرامون هسته اتمها شكل ميگيرند كه اگر به صورت كره بود اين انرژي ميبايست با مجذور فاصله ( شعاع مدار ) رابطه معكوس داشته باشد كه چنين نيست . به طور مثال طول موج طيف بنفش مريي از 390 الي 430 نانومتر و طول موج طيف قرمز 650 الي 800 نانومتر است ، در واقع فركانس طيف بنفش مريي تقريبا دو برابر تواتر طيف قرمز مريي است كه طبق رابطه پلانك ، انرژي طيف بنفش مريي تقريبا دو برابر طيف قرمز مريي خواهد بود كه بيانگر اين موضوع است كه پتانسيل و شدت ميدان الكتريكي در لايه اول اتم درست دو برابر پتانسيل و شدت ميدان الكتريكي در لايه هفتم اتم است ، براي اينكه شعاع مدار و محيط مدار ، دو برابر و بدنبال آن پتانسيل و شدت ميدان الكتريكي نصف و بدنبال آن سرعت زاويهاي الكترون كاهش و فركانس و تواتر نيز نصف شده است . يعني اگر شدت ميدان الكتريكي در پيرامون يك بار الكتريكي ساكن با عكس مجذور شعاع متناسب باشد يعني E≈1/r² ، شدت ميدان الكتريكي در پيرامون يك بار الكتريكي دوار ( با اسپين ) يعني هسته اتم با عكس شعاع مدار متناسب است يعني E≈1/r . كه در حالت كلي بيانگر اين موضوع است كه شدت ميدان الكتريكي در مدارهاي اتم با شعاع مدار رابطه عكس دارد نه با مجذور شعاع مدارها
اينك فلزي را در نظر ميگيريم كه انرژي بستگي الكترون در آن W ميباشد . طيف نوري با انرژي E=hν بر آن تابانده ميشود . آنچه كه مسلم است اينكه اين انرژي بسته به فركانس خود در لايه يا زير لايه ( تراز انرژي ) مخصوص به خود القا و جذب ميشود . . اينك اگر hν<W باشد ، بديهي است كه تراز انرژي مربوط به انتشار و جذب موج ، بالاتر از تراز انرژي مربوط به تراز ظرفيت فلز يا انرژي بستگي الكترون است . در شكل زير :
به طور مثال اگر انرژي بستگي الكترون در سطح فلزي برابر انرژي طيف زرد باشد ، تابش نور قرمز نميتواند آن را از فلز جدا كند ، براي اينكه انرژي طيف زرد بيشتر از طيف قرمز است و طيف قرمز نميتواند در اين حالت تراز مربوط به طيف زرد را برانگيخته كند .
اينك اگر hν≥W باشد ، بديهي است كه اين انرژي به صورت پتانسيل ميدان الكترومغناطيسي به لايهها و زير لايههاي ديگر القا و در نهايت به تراز انرژي فوقاني ميرسد كه الكترون ظرفيت فلز به آن وابستگي دارد ، در اين حالت تراز انرژي مربوط به انتشار و جذب موج ، پايين تر از تراز انرژي مربوط به تراز ظرفيت فلز يا انرژي بستگي الكترون است . در شكل زير :
به طور مثال اگر انرژي بستگي الكترون در فلزي برابر انرژي طيف زرد باشد ، تابش نور بنفش ميتواند آن را از فلز جدا كند ، براي اينكه انرژي طيف زرد كمتر از طيف بنفش است و طيف بنفش ميتواند بعد از جذب به تراز انرژي مربوط به خود ، به تراز طيف زرد القا و ارتقا يابد و آن را برانگيخته كند . كه حاصل كار ، كنده شدن الكترون از فلز ميشود كه در اين وضعيت اگر hν=W باشد الكترون انرژي قابل توجهي نخواهد داشت ، ولي اگر hν>W باشد آنگاه الكترون به مقدار hν-W انرژي دريافت ميكند . يعني :
Ee=hν -W انرژي جنبشي الكترون كنده شده
از اين رو لازم نيست كه ما حتما خاصيت ذرهاي براي نور قائل شويم ، براي اينكه ميتوانيم با داشتن خاصيت موجي نور ، اين پديده را توجيه كنيم . با كوتاه شدن طول موج طيف و افزايش فركانس آن ، انرژي طيف افزايش نشان داده در نتيجه مقدار Ee=hν -W نيز زياد خواهد شد كه به دنبال آن انرژي جنبشي و سرعت الكترون افزايش نشان خواهد داد . با افزايش شدت طيف تابانده شدن به الكترود ( سطح فلز ) ، فقط به تعداد الكترونهاي جدا شده از فلز افزوده ميشود و هيچ افزايش سرعتي نخواهيم داشت .
بزرگترين ايراد وارده به فيزيك كلاسيك و فيزيك مدرن در رابطه با توجيه اين پديده ، اين است كه آنها سعي دارند برهمكنش مستقيم نور با الكترون را تحت برسي و كنكاش قرار دهند كه درست به نظر نميرسد . براي اينكه تابشهايي همچون گاما و ايكس به واسطه فركانس زيادي كه دارند ، ميتوانند با ميدان الكترومغناطيسي الكترون برهمكنش داشته باشند و علت آن سرعت زاويهاي ( اسپين ) بسيار زياد الكترون است كه مسلما سرعت زاويهاي ( چرخش ) الكترون به دور هسته بسيار كمتر بوده و به اين دليل طيفهاي مريي نور نميتوانند مستقيما با خود الكترون برهمكنش داشته باشند ، بلكه ميبايست با ترازهاي انرژي اتم برهكنش داشته باشند و از طريق اين لايهها و زير لايهها انرژي طيف ( نور ) به الكترون منتقل شود .
توجيه جديد دوم :
با توجه به آزمايش ، وقتي نور با بسامد مناسب به الكترود A بتابد ، در مدار جريان برقرار ميشود بدون آنكه نياز باشد اختلاف پتانسيلي بين دو الكترود برقرار گردد و اين پايه و اساس كار كرد سلولهاي خورشيدي ( آفتابي ) است . ولي كار كرد اين نوع سلول ميبايست فراتر از تصورات ما باشد كه سعي ميكنيم اين فرايند جالب را توجيه كنيم . به شكل زير توجه نماييد
در مرحله اول ، تابشي با انرژي hν به تراز مخصوص به خود القا و جذب ميشود ، الكترون تراز برانگيخته ميشود ، ولي چون تراز بالا پر است ، الكترون مجبور است به بيرون پرتاب شود ، اين در حالي است كه تمام انرژي hν را به صورت انرژي جنبشي همراه خود دارد . در مرحله دوم در مسير حركت خود با الكترون آزاد يا الكترون ظرفيت تصادم ميكند و تمام انرژي جنبشي خود را به آن منتقل ميكند و جايگزين آن ميشود . در مرحله سوم مقداري از اين انرژي صرف خنثي كردن انرژي بستگي الكترون به سطح فلز ( يعني W ) ميشود و بقيه به صورت انرژي جنبشي الكترون كنده شده از سطح فلز آشكار ميشود . در مرحله چهارم الكتروني پيرامون هسته به طرف داخل كشيده شده و سقوط ميكند و تراز خالي را پر خواهد كرد كه در اين صورت جريان الكتريكي يكنواخت و يكطرفه در مدار بر قرار ميشود . با اين روش ميتوان انرژي تابشي خورشيد را به انرژي الكتريكي تبديل كرد كه جهت بالا بردن راندمان سلول ، ميبايست از عناصر و تركيباتي استفاده نمود كه با كمترين انرژي تابشي ممكن ( طيف نارنجي و قرمز ) جريان الكتريسيته توليد كنند و صد البته با طيفهاي ديگر ميتوانند جريان الكتريكي با شدت بيشتري توليد كنند . اين عناصر و يا تركيبات ميبايست بخش عمده نور خورشيد را جذب و در نتيجه تيره و تاريك ديده شوند .
در حالت كلي تابشي با انرژي hν به تراز مخصوص به خود القا و جذب ميشود ، الكترون تراز برانگيخته ميشود ، ولي چون تراز بالا پر است مجبور است به بيرون پرتاب شود در حالي كه تمام انرژي hν را به صورت انرژي جنبشي همراه خود دارد . در مسير حركت خود انرژي بستگي الكترون به سطح فلز در مقابل فرار و خروج آن مقاومت ميكند كه تفاضل اين دو انرژي ، انرژي جنبشي نهايي الكترون خارج شده از فلز است .
بزرگترين ايراد توجيه پديده فتوالكتريك توسط انيشتين اين است كه الكترون در خلاف جهت اصابت فوتون پرتاب ميشود . يعني پديدهاي كه هيچ قانون فيزيكي ( مكانيكي ) فعلا نميتواند آن را توجيه كند ، يعني شكل زير :
در توجيه پديده فتوالكتريك توسط انيشتين ، فوتونها جرم پيدا ميكنند و همچنين تكانه دارند و تمام انرژي جنبشي خود را به الكترون منتقل كرده و خود نابود ميشوند . ميتوانيم توپ گلفي را تصور كنيم كه با سرعت زياد به توپ فوتبال برخورد كند و آن را به بيرون چمن پرتاب كند و خود از حركت باز ايستد ، ولي زاويه مسير حركت توپ گلف و مسير پرتاب توپ فوتبال همواره بيشتر از 90 درجه است و به احتمال زياد به اين دليل مهم ميباشد كه پلانك از پذيرش توجيه پديده فوتوالكتريك توسط انيشتين خودداري و امتناع نموده است .
منبع:
1-محمدرضا طباطبايي
2- http://www.ki2100.com/
3-http://www.articles.ir
/س
{{Fullname}} {{Creationdate}}
{{Body}}