یک کاغذ را چند بار می توان تا کرد؟


اگر ورق را هر بار طوری تا کنید که اندازه آن نصف شود بیش از ۷ یا ۸ بار نمی توانید آن را تا کنید. مهم نیست ورق اولیه شما چقدر بزرگ باشد. شاید تا به حال این قضیه را شنیده باشید و سعی کرده باشید که آن را امتحان کنید و متوجه شده باشید که تا کردن کاغذ بیش از۷ یا ۸ بار بسیار سخت است. آیا می توان گفت که این اعداد یک محدودیت مستدل و عمومی برای تا کردن کاغذ هستند؟
فرض کنید شما کاغذی را انتخاب کرده اید که دارای پهنای w و ضخامت t است . اگر شما شروع به تا کردن ورق از یک سمت بکنید وقتی به جایی برسید که دیگر نتوانید کاغذ را تا کنید یک نوار باریک خواهید داشت.
با هر تا کردن ضخامت کاغذ دو برابر می شود و پهنای آن نصف خواهد شد. یعنی بعد از N بار تا کردن ضخامت ۲n خواهد بود و البته مشخص است که پهنا ۰.۵n می شود
اگر با کاغذی به پهنای ۱۱cm و ضخامت ۰.۰۰۲cm این کار را انجام دهید بعد از ۷ بار تا کردن نسبت t/w برابر ۱/۶ می شود. این بدان معنیست که اندازه ضخامت از پهنا بیشتر می شود و در نتیجه دیگر قادر به تا کردن کاغذ نخواهید بود. اگر این کاغذ را ۵۰ بار بزرگتر کنید شاید بتوانید آن را تا ۱۰ بار هم تا کنید.
اگر به صورت متناوب کاغذ را از عرض و طول تا کنید ممکن است تعداد دفعات بیشتری بتوانید به تا کردن کاغذ ادامه دهید. در این صورت هر بارضخامت دو برابر می شود در صورتی که پهنا هر دو دفعه یک بار نصف می شود.
چندین سال پیش هنگامی که بریتنی گالیوان در دبیرستان درس می خواند با این مسیله رو به رو شد که چگونه کاغذی را ۱۲ بار تا کند . او باید برای گرفتن نمره از یکی از کلاسهایش این مسیله را حل می کرد. بعد از آزمایش راه های مختلف او موفق شد که ورقه نازکی از طلا را ۱۲ بار تا کند. اما مسیله طرح شده در باره کاغذ بود و نه طلا.
گالیوان بر روی معادله تعداد دفعاتی که می توان یک کاغذ با اندازه معین را تا کرد کار کرد.
که در آن L کمترین درازای کاغذ، t میزان ضخامت کاغذ و n تعداد دفعاتی است که می توان کاغذ را تا کرد. واحد t و L باید یکسان باشد.
برای یک طول و ضخامت معین عبارت *******بیانگر آن است که صفحه بعد از n بار تا کردن چند برابر کوچک شده است. با n=۰ شروع می کنیم و به همین ترتیب به رشته ای از اعداد به این صورت می رسیم:
۰, ۱, ۴, ۱۴, ۵۰, ۱۸۶, ۷۱۴, ۲۷۹۴, ۱۱۰۵۰, ۴۳۹۴۶, ۱۷۵۲۷۴, ۷۰۰۰۷۴, ۲۷۹۸۲۵۰, . . .
این به این معنی است که در تای دوازدهم ۲۷۹۸۲۵۰ برابر مقدار کاغذی که در تای اول از دست می رود از دست خواهد رفت.
گالیوان در کتابی با نام ((Historical Society of Pomona Valley)) چگونگی به دست آوردن این معادله و تلاشش برای حل مشکل را توضیح داده است. بالاخره در June ۲۰۰۲ گالیوان یک کاغذ بزرگ را ۱۲بار تا کرد.
راستی اگر از دید دیگری مسیله را نگاه کنیم باز هم جالب خواهد بود. منظورم این است که اگر تا کردن کاغذ را با ارتفاع بسنجیم بعد از ۱۰ بار تا کردن ضخامت کاغذ بدست آمده ۱۰۲۴ برابر حالت اولیه می شود و در مرحله ۱۱ ام۲۰۴۸ و در مرحله ۱۲ ام ۴۰۹۶
یعنی در مرحله دوازدهم باید ۴۰۹۶ برگ را تا کنیم که ضخامتی برابر با حدود ۵۰ سانتی متر که کار خیلی دشوار و تقریبا ناممکن است.
منبع:http://www.academist.ir