پيل سوختي، فناورى سازگار با محيط زيست (2)
پيل سوختي، فناورى سازگار با محيط زيست (2)
پيل سوختي، فناورى سازگار با محيط زيست (2)
تهيه كنندگان : عبدالامير كربلايي و ضحي كربلايي
منبع : راسخون
منبع : راسخون
انرژی هیدروژن و پیل سوختی
هیدروژن بعنوان فراوانترین عنصر موجود در سطح زمین به روش های مختلف قابل تولید میباشد. در یک سیستم ایده آل انرژی بر پایه هیدروژن با هدف تأمین امنیت ارائه انرژی، حفظ محیط زیست و ارتقاء کارایی سیستم انرژی، هیدروژن از الکتریسیته تولیدی از منابع تجدیدپذیر نظیر باد، خورشید، زمین گرمایی و نظایر آن تولید شده و پس از ذخیره سازی و انتقال به محلهای مصرف، در کاربردهای مختلف از جمله تجهیزات الکترونیکی کوچک (میلی وات) ، صنعت حمل و نقل و صنایع نیروگاهی قابل بکارگیری است. با این رویکرد بسیاری بر این باورند که سوخت نهایی بشر هیدروژن بوده و بشر درآیندهای نه چندان دور عصر هیدروژن را تجربه خواهد نمود.
از جمله ویژگیهایی که هیدروژن را از سایر گزینههای مطرح سوختی متمایز مینماید، میتوان به فراوانی، مصرف تقریباً منحصر به فرد، انتشار بسیار ناچیز آلایندهها، برگشتپذیر بودن چرخه تولید آن و کاهش اثرات گلخانهای اشاره نمود. سیستم انرژی هیدروژنی بدلیل استقلال از منابع اولیه انرژی، سیستمی دایمی، پایدار، فناناپذیر، فراگیر و تجدیدپذیر میباشد و پیش بینی میشود که در آیندهای نه چندان دور تولید و مصرف آن بعنوان حامل انرژی به سراسر اقتصاد جهانی سرایت نموده و اقتصاد هیدروژنی تثبیت شود؛ با این وجود نباید انتظار داشت که هیدروژن در بدو ورود از نظر قیمتی بتواند با سایر حاملهای انرژی رقابت نماید. در آینده هیدروژن و پیل های سوختی میتوانند نقش محوری و کنترل کنندگی در آلودگی شهرها داشته باشند.عمل تبدیل انرژی شیمیایی موجود در هیدروژن به انرژی الکتریکی توسط پیل سوختی انجام میپذیرد که متناسب با کاربرد و خواص ساختاری آنها، پیل های سوختی خود به انواع مختلف تقسیم میشوند. در واقع اهمیت فناوری پیل سوختی در یک سیستم انرژی بر پایه هیدروژن (عصر هیدروژن)به گونهای است که بسیاری آنرا به لوکوموتیو قطار توسعه عصر هیدروژن تشبیه نمودهاند. علاوه بر فناوری پیل سوختی به عنوان مصرف کننده هیدروژن در عصر هیدروژن، فناوریهای تولید، ذخیره سازی، عرضه و انتقال هیدروژن نیز از اجزاء اصلی ساختار انرژی این عصر خواهند بود.
پیل سوختی
تولید هیدروژن در خودرو با استفاده از مبدل سوخت
تولید هیدروژن در خارج از خودرو و ذخیره هیدروژن در خودرو
در صورتی که هیدروژن در جایگاه سوخت گیری تولید شود، سیستم ذخیره سوخت خودرو میتواند روش های مختلفی از قبیل ذخیره هیدروژن در مخازن تحت فشار ، بکار گیری نانوتیوبها ، بکارگیری جاذبهای هیدرید فلزی ، بکارگیری هیدریدهای شیمیایی و ... را شامل شود. در صورت تولید هیدروژن در خودرو ، مبدل سوخت (بالاخص مبدل بنزین و متانول) قابل نصب بر روی خودرو بخش اصلی و پیچیده سیستم سوخت در خودرو را شامل میگردد.
بخش سوخت رسانی
مبدل سوخت
سوختهای متداول همچون گاز طبیعی ، پروپان و بنزین و سوختهایی مانند متانول و اتانول ، همگی در ساختار مولکولی خود هیدروژن دارند. با بکارگیری مبدل نصب شده بر روی خودرو (onboard) یا مبدلهایی که در محلهای سوخت گیری نصب میشوند، میتوان هیدروژن موجود در این سوختها را جدا کرده و به عنوان سوخت در پیل سوختی مورد استفاده قرار داد. بدین ترتیب مشکل ذخیره سازی هیدروژن و توزیع آن تقریبا بطور کامل رفع میشود. کار مبدل سوخت فراهم آوردن هیدروژن مورد نیاز پیل سوختی با استفاده از سوختهایی است که در دسترس بوده و حمل و نقل آن آسان میباشد. مبدلهای سوخت باید توانایی انجام این کار را با حداقل آلودگی و بالاترین راندمان داشته باشند. عملکرد مبدلهای سوخت به زبان ساده عبارت است از اینکه یک سوخت سرشار از هیدروژن را به هیدروژن و محصولات فرعی دیگر تبدیل نماید.
یکی از مشکلات مهم در زمینه ساخت مبدلها اندازه و وزن مبدل میباشد. برای ارتقاء سطح بازده ، لازم است وزن و حجم مبدلها به ازای هر واحد انرژی الکتریکی حاصل از سیستم تا حد ممکن کاهش یابد. به همین ترتیب ، هزینه ساخت مبدلها نیز باید پایین نگاه داشته شود تا گران بودن این فناوری مانع از تولید انبوه خودرو نشود. دومین مشکل مهم در این زمینه میزان خلوص هیدروژن تولید شده از مبدلها است. آلایندههایی همچون مونوکسید کربن (و در بعضی از انواع سوخت ، سولفیدها) از محصولات فرعی فرآیند تبدیل هستند. در این میان ، مقدار زیاد مونوکسید کربن میتواند موجب سمی شدن کاتالیست پیل سوختی شود. از این رو لازم است قبل از ورود سوخت به درون پیل سوختی ، مونوکسید کربن آن حذف شود. اگر چه انواع مختلفی از مبدلهای سوخت وجود دارند که اغلب از ترکیب فناوریهای مختلف حاصل گردیدهاند، اما
انواع اصلی مبدل هایی که در زمینه متداول هستند عبارتند از:
1. مبدلهای با سیستم بخار (Steam Reformer)
2. مبدلهای اکسیداسیون جزئی (Partial Oxidation Reformer)
3. مبدلهای اتو ترمال (Auto thermal Reformer)
اصول اولیه عملکرد هر یک از این فناوریها و فرآیندهای شیمیایی مربوط به آنها بطور مجزا به قرار ذیل میباشد:
مبدل با سیستم بخار
این ناخالصیها عبارتند از: مونوکسید کربن و دی اکسید کربن ناشی از واکنشهای درون مبدل ، باقیمانده سوخت (مانند متانول یا بنزین) ، اکسیدهای نیتروژن ، اکسیدهای سولفور ، و ترکیبات آلی فرار که همه این ناخالصیها در حقیقت از سوخت اولیه ناشی میشوند. از این رو ضروری است که جدا سازی این ناخالصیها از گاز خروجی نهایی مبدل ، صورت پذیرد. بویژه در مورد جدا سازی مونوکسید کربن که سطح استاندارد برای پیل های سوختی که در دمای پایین کار میکنند، کمتر از 10 ppm در نظر گرفته شده است تا بدین ترتیب از سمی شدن کاتالیست موجود در پیل سوختی بخصوص پیل سوختی پلیمری جلوگیری به عمل آید.
یک پیل سوختی جهت تولید انرژی با بازدهی بهینه ، نیاز به تغذیه مداوم سوخت و اکسید کننده ، خروج آب تولیدی از واکنش الکتروشیمیایی درون پیل ، مرطوب نگهداری غشاء توسط مرطوب نگه داشتن گازهای ورودی ، کنترل درجه حرارت و فشار دارد. تجهیزات و امکانات جانبی که این شرایط بهینه را برای پیل سوختی فراهم میآورند، سیستم پیل سوختی نام دارند. یک سیستم پیل سوختی را بطور کلی میتوان به اجزای اصلی زیر تقسیم کرد:
1. سیستم سوخت رسان که شامل مبدل سوخت و یا سیستم ذخیره هیدروژن میباشد.
2. سیستم تأمین هوا یا اکسید کننده که اکسیژن مورد نیاز پیل سوختی را فراهم می آورد.
3. سیستم مدیریت آب و حرارت که شامل سیستم مرطوب کننده گازهای ورودی ، سیستم خنک کننده ، سیستم و یا شیرهای کنترل فشار و نماگرها است.
4. الکترونیک – قدرت (Power Electronic) که مربوط به فصل مشترک بین پیل سوختی و مصرف کننده برق جهت تبدیل جریان و ولتاژ برق به ولتاژ و جریان مناسب می باشد.
5. سیستم کنترل الکترونیکی که کنترل دما ، فشار ، برق خروجی از پیل ، شارژ باتریهای ذخیره ، هماهنگی بین سیستم سوخت رسان و پیل سوختی و بخش Power Electronic را بر عهده دارد.
هر یک از این سیستمها میتوانند بر عملکرد یکدیگر و بر سری پیل سوختی تأثیر متقابل داشته باشند. همچنین متناسب با نوع پیل سوختی و کاربرد آن ، این سیستمها میتوانند متفاوت باشند که در اینجا بطور مشروح به بررسی هر یک از آنها خواهیم پرداخت.
پیل های سوختی برای وسایل قابل حمل الکترونیکی
پیل های سوختی وسایل سادهای هستند که اساسا از رساناهای نافلزی به نام الکترولیت که میان دو الکترود قرار میگیرند تشکیل شدهاند. هیدروژن از سوختی ، مانند متانول ، از درون الکترولیت جریان مییابد و با یک عامل اکسنده ، مانند اکسیژن هوا ، مخلوط میشود و از واکنش شیمیایی جریان الکتریکی بین دو الکترود برقرار میشود. پیلها را میتوان به سهولت و به سرعت با افزودن سوخت بیشتر دوباره پر کرد.
پیل های سوختی به لحاظ محیطی نیز تمیزند، زیرا اصلیترین فرآورده جنبی آنها ، آب حاصل از ترکیب هیدروژن و اکسیژن است، در حالی که باتریهایی که نهایتا از شارژ کردن مکرر فرسوده میشود، مسئله دفع دارند. اکنون یکی از پژوهشگران آزمایشگاه ملی آلاموس یک ریز پیل سوختی اختراع کرده است و پیش بینی میکند که توان پیل او در اندازه و قیمت یکسان ولی از نصف وزن باتریهای نیکل - کادمیوم مرسوم 50 برابر بیشتر باشد. این پژوهشگر پیش بینی میکند که تلفنهای همراه به این طریق با مصرف کمتر از 60 گرم متانول در حال آماده بطور پیوسته به مدت 40 روز کار کنند. این اختراع بیشتر یک پیروزی مهندسی است تا یک اعجاب علمی. در ساخت این پیل وی از روش های جدید برای ساخت مدار الکترونی بهره جسته و آنها را در فن اوری پیل های سوختی بکار گرفته است.
عامل کلیدی در بسته بندی است. در حالی که غالب پژوهشگران با طراحی الکترولیت و الکترودها آغاز کردند، این پژوهشگر دریافت که بهترین راه رسیدن به کوچک سازی و تولید انبوه ، استفاده از یک فیلم نازک پلاستیکی به عنوان ظرف پایه برای پیل های سوختی میکروسکوپی است. غشای پلاستیکی به ضخامت تنها 25 میکرون با ذرات هستهای بمباران میشود، به این ترتیب حکاکی شیمیایی سبب ایجاد منافذ ریزی میشود که محل ریختن الکترولیت مایع است. صفحات فلزی الکترود ، کاتالیزگر و یک شبکه رسانش که پیل های مجزا به هم متصل میکند با استفاده از روش های عملی تراشه سازی مانند رسوب گذاری در خلا روی ساختار پلاستیکی ، لایه گذاری و حکاکی میشوند. طبق نظر پژوهشگران "پیل های سوختی اساسا مثل مدارهای چاپی ساخته میشوند".
کاربردهای پیل سوختی نیروگاهی
پیل های سوختی نسبتاً آرام و بیصدا هستند لذا جهت تولید برق محلی مناسبند. علاوه بر کاهش نیاز به گسترش شبکه توزیع برق، از گرمای تولیدی از این نیروگاهها میتوان جهت گرمایش و تولید بخار آب استفاده نمود.
این نیروگاهها در مصارف کوچک بازدهی الکتریکی بالایی دارند و همچنین در ترکیب با نیروگاههای گاز طبیعی بازدهی الکتریکی آنها به 70-80% میرسد.
مزیت دیگر این نیروگاهها عدم آلودگی محیط زیست است. خروجی نیروگاههای پیلسوختی بخارآب می باشد.
نیروگاههای پیل سوختی قابلیت استفاده از سوختهای مختلف مانند متانول، اتانول، هیدروژن، گاز طبیعی، پروپان و بنزین را دارند و مانند سایر نیروگاهها محدود به استفاده از یک منبع انرژی خاص نیست.
از زمانیکه اولین پیلسوختی نیروگاهی در دهه 60 تولید گشت، تا کنون در مجموع 650 سیستم کامل با توان بیش از 10 کیلووات (میانگین آن 200 کیلووات است) ساخته شد. تقریباً 90 درصد از این واحدها با گاز طبیعی تغذیه می شود. البته استفاده از سوختهای جایگزین نظیر بیوگاز و گاز ذغال نیز پیشرفت قابل ملاحظهای داشته است.
در این بخش نیروگاه انواع متنوع پیلسوختی به کار رفته است. در ابتدا از پیلسوختی اسید فسفریک آغاز گردید و سپس پیلسوختی پلیمری و پیلسوختی کربنات مذاب جایگزین آن گشتند. در حالیکه پیلسوختی اکسید جامد در آینده بازار را به قبضه در خواهد آورد.
در بخش پیل های سوختی نیروگاهی کوچک (زیر 10 کیلووات) نیز رشد قابل ملاحظهای را شاهد بودیم. تعداد این واحدها اکنون به 1900 رسیده است. این سیستم جهت مصارف خانگی و بازارهایی از قبیل UPS ونیروی پشتیبان در اماکن دوردست کاربری دارد. نیمی از محصولات در آمریکای شمالی توسعه یافته است.
در بخش سیستمهای نیروگاهی کوچک 20 درصد سهم بازار را پیلسوختی اکسیدجامد و مابقی را پیلسوختی پلیمری تشکیل میدهد. بازار پیلسوختی کوچک در ژاپن که به مصارف خانگی اختصاص دارد، منحصراً با پیلسوختی پلیمری است و امید است تا انتهای سال 2005 محصولات به بازار عرضه گردند.
فروش تعدادی از واحدهای نیروگاهی کوچک آغاز شده است که از جمله آنها سیستم GenCore شرکت PlugPower می باشد(توان 5 کیلووات، 15000 دلار)
دولت ژاپن حمایت خود از توسعه پیل های سوختی نیروگاهی در ابعاد بزرگ را از سال 1980 آغاز نموده است و شرکت های ژاپنی گاز توکیو و Osaca از بزرگترین شرکت های توسعه دهنده این فنآوری میباشند.
اساس کار پیل های سوخت
پیل های سوختی با غشاء تبادل پروتون:
(Proton Exchange Membrane Fuel Cells (PEMFC
در پیل سوختی PEM الکترولیت از یک غشاء نازک پلیمری (مانند پلی پرفلور و سولفوریک اسید) نافیون (Nafim TM ) که نفوذپذیر در پروتونهاست، اما هادی الکتریسیته نمیباشد و الکترودها از کاربن درست شدهاند .هیدروژن در درون پیل سوختی به روی آند جاری شده و به پروتونها و الکترونها تقسیم میشود. یونهای هیدروژن از طریق الکترولیت به کاتود نفوذ میکنند، درحالیکه الکترونها از طریق یک مدار خارجی جریان کرده و تولید انرژی مینمایند. اکسیژن به صورت هوا به کاتد ارسال شده و با الکترونها و یونهای هیدروژن ترکیب گردیده و تولید آب میکند.این واکنشهای روی الکترودها مطابق زیر میباشند.
2 H2O ===> 4H + 4e: آند
O2+4H ===> 2H2O :کاتد
انرژی 2H2 +O2 ===> 2H2O +: نتیجه
پیل های PEM در دمای حدود 80 سانتیگراد کار میکنند. در این دمای پایین واکنشهای الکتروشیمیائی معمولاً خیلی کند صورت میگیرد بنابراین از یک لایه نازک پلاتین روی هر یک از الکترودها بعنوان کاتالیزور استفاده میشود.
این دستگاه الکترولیت/ الکترود بنام مجموعه الکترود غشاء (MEA ) خوانده شده و بین دو صفحه ی جریان، میدان ساندویج گردیده تا یک پیل سوختی را بوجود آورد. این دو صفحه شامل شیارهایی جهت کانال هدایت سوخت به الکترودها و همچنین هدایت الکترونها به خارج از مجموعه MEA میباشد. هر پیل حدود 7/0ولت برق تولید می کند.برای تولید ولتاژ های بالاتر تعدادی از این پیلها بطور سری بهم وصل گردیده و تشکیل ساختاری بنام مجموعه پیل سوختی می دهند.پیل های سوختی PEM دارای یک سری مزایا هستندکه باعث شده از آنها در اتومبیل و کاربردهای کوچک خانگی مانند جایگزین باطریهای قابل شارژ استفاده شود. پیلها در دمای نسبتاً پایین کار می کنند و لذا باعث استارت سریع از حالت سرد بوده و به دلیل داشتن دانسیته بالای انرژی دارای قابلیت ساخت با حجم کم و فشرده می باشند .بعلاوه پیل های PEM با راندمان بالا حدود (40-50) درصد حداکثر ولتاژ تعریف شده در تئوری کار میکنند و میتوانند خروجی خود را بسرعت تغییر داده تا با تغییر در انرژی مورد نیاز سازگاری داشته باشند.
در حال حاضر دستگاههایی با نمایش قدرت تولید 50 کیلو وات مورد بهرهبرداری و عملیات قراردارد و دستگاههایی با قدرت تا 250 کیلو وات درحال توسعه است. بهرحال هنوز یک سری محدودیتها وجود دارد که باید قبل از اینکه این تکنولوژی گسترده تر شود بر انها غلبه کرد. مشکل اصلی قیمت بالا، مثل گرانی جنس غشاء وکاتالیزورمی باشد. اما نتیجه پژوهشها و طرحهای توسعهای دردست اقدام بتدریج از قیمتکاسته و همچنین به هنگام تولید اندوده درمقیاس بالا جهشی بزرگ در کاهش قیمت و اقتصادی شدن آن خواهد نمود. مانع دیگر بر سر راه پیل های PEM نیاز آنها به هیدروژن خاص جهت کارکردن میباشد. زیرا آنها خیلی حساس به مسمومیت با منواکسیدکربن وناخالص های دیگر هستند و این عمدتا بدلیل دمای پایین عملیاتی پیل ضرورت استفاده ازکاتالیزورحساس در پیل را موجب میشود.بهرحال کارهایی در دست اقدام است تا یک سیستم کاتالیزور توام با غشاء با قدرت مانور بهتر تولید گردد که قادر به کارکرد با دمای عملیاتی بالاتر باشد.
پیل های سوختی بازی :(Alkaline Fuel Cell(AFC
2H2 + 4OH ===> 4H2O + 4e: آند
O2 + 2H2O + 4e ===> 4OH :کاتد
پیل های بازی در همان دمای عملیاتی مشابه پیل های PEM ( حدود 80 سانتیگراد )کار میکنندو لذا سریع استارت هستند. اما دانسیته انرژی آنها حدود ده برابر کمتر PEM میباشد و بنابراین برای استفاده درموتور اتومبیل بسیار پرحجم اند.آنها بهر حال ارزان ترین نوع پیل سوختی هستند و بدین جهت میتوانند برای دستگاههای تولید برق کوچک و ثابت بکار برده شوند. پیل های بازی مشابه پیل های PEM شدیداً به منواکسیدکربن و ناخالصیهای دیگرکه موجب مسمومیت کاتالیزور میشوند حساس هستند.بعلاوه منابع تغذیه آنها باید عاری از دی اکسید کربن باشند، زیرا واکنش دی اکسیدکربن با الکترولیت هیدروکسید پتاسیم تشکیل کربنات پتاسیم میدهدکه باعث محدودیت در راندمان پیل میگردد.
پیل سوختی اسید فسفریک
Phosphoric Acid Fuel) Cell(PAFC
پیل های سوختی کربنات ذوب شده :(Molten Carbonate Fuel Cells(MCFC
CO3 + H2 ===> H2O +CO2 + 2e: آند
CO2 +1/2 O2 + 2e ===> CO3 :کاتد
دمای بالائی که این پیلها در آن کار می کنند به این معناست که آنها قادرند بطور داخلی تشکیل هیدروکر مانند گاز طبیعی و نفت جهت تولید هیدروژن در درون ساختار پیل بدهند. در چنین دمای بالائی هیچگونه مشکل مسمومیت منواکسید وجود ندارد، گرچه مشکل گوگرد سر جای خود باقی است و بجای کاتالیزور پلاتین گران قیمت میتوان از نوع نیکل ارزانتر استفاده نمود. حرارت اضافی ایجاد شده میتواند در سیکل ترکیبی نیروگاها بکار رود. راندمان این نوع پیلها تا حدود 60 درصد است و در صورتی از گرمای تلف شده استفاده گردد میتواند تا 80 درصد افزایش یابد. دمای بالای کارکرد، بهر حال پاره ای مشکلات را بوجود می آورد. زمان قابل ملاحظهای طول میکشد تا پیل به دمای عملیاتی برسد و این باعث میشود که پیل برای کاربردهای حمل و نقل نامناسب باشد و دمای بالا و طبیعت خورنده الکترولیت احتمالاً به این معناست که پیل برای تولید برق خانگی غیر ایمن است .راندمان بالای تولید انرژی پیل باعث جذابیت آن در استفاده در فرآیندهای صنعتی در مقیاس بالا و در توربین های تولید برق باشد. در حال حاظر پیل سوختی کربنات ذوب شده با ظرفیتهای تا 2 مگا وات به نمایش گذارده شده ولی ظرفیتهای 50 الی 100 مگا وات در دست طراحی است.
پیل های سوختی اکسید جامد
(Solid oxide Fuel cells (SOFC
H2 + O ===> H2O + 2e: آند
O2 +4e ===> 2O :کاتد
CO + O ===> CO2 +2e
همانند پیل های سوختی ذوب شده در این پیلها نیز دمای عملیاتی بالا به معنای مقاومت در برابر مسمومیت منواکسیدکربن میباشد زیرا همانگونه که در بالا مشاهده میشود منواکسیدکربن سریعاً به دی اکسید کربن تبدیل میگردد. این خود باعث عدم نیاز به استفاده از رفرمینگ خارجی جهت استخراج هیدروژن از ماده سوختی میباشد و این نوع پیلها میتوانند دوباره از نفت و یا گاز طبیعی استفاده کنند.پیل های سوختی اکسید جامد همچنین بالاترین انعطاف را در برابر آلودگی با گوگرد نسبت به سایر تکنولوژیهای بحث شده و تا کنون از خود نشان میدهند. این پیلها بعلت استفاده از الکترولیت جامد نسبت به پیل های سوختی کربنات ذوب شده پایدارترند اما مواد ساختمانی آنها به جهت نیاز به مقاومت در برابر دمای عملیاتی بالا گرانتر است.این پیلها میتوانند به راندمان حدود 60 درصد برسند و انتظار میرود که برای تولید برق و حرارت در صنعت و برای تهیه نیروی کمکی در اتومبیل بکار برده شوند.
پیل های سوختی متانول مستقیم
(Direct Methanol Fuel Cells(DMFC
CO2 + 6H + 6e CH3OH+H2O ===>: واکنش آند
3/2 O2 + 6H +6e ===>3 H2O: واکنش کاتد
CH3OH +3/2 O2 ===> CO2 + 2H2O : واکنش پیل
انتظار میرود که این پیلها در دمای حدود 120 درجه سانتیگراد قدری بالاتر از دمای عملیاتی پیل استاندارد PEM کار کنند و راندمان حدود چهل درصد داشته باشند. یکی از عیوب پیل متانول مستقیم دمای عملیاتی پایین و در نتیجه تبدیل متانول به هیدورژن و دی اکسید کربن است که نیاز به استفاده از مقادیر بیشتر کاتالیزور پلاتین نسبت به پیل استاندارد PEM دارد. بهرحال این افزایش هزینه نسبت به استفاده راحت از پیل سوختی مایع و عدم استفاده از کاتالیزور می چربد. تکنولوژی در پیش روی پیل سوختی متانول مستقیم هنوز در مراحل اولیه توسعه خود میباشد؛ ولی بهرحال کاربرد آن دز گوشیهای تلفن همراه و رایانههای کیفی (LABTOP ) با موفقیت نشان داده شده و توانائی و کارآئی و هدف نهائی استفاده از آن در سالهای آتی بروز داده خواهد شد.
پیل های سوختی اصلاح شده : Regenerative Fuel Cells
اهداف كميته راهبري پیل سوختی
کمیته راهبری پیلسوختی در دیماه 1380 با ابتکار و پیگیری وزارت نیرو و دفتر همکاریهای فنآوری ریاستجمهوری و با هدف جهتدار شدن مسیر حرکت کشور در این زمینه و تعیین اولویتهای تحقیقاتی، پژوهشی و اجرایی و همچنین جلوگیری از فعالیتهای موازی تشکیل شد. وزارت نیرو در تشکیل این کمیته، ترکیبی از نهادها و ارگانهای مرتبط نظیر دفتر همکاریهای فنآوری، وزارت نفت، صنایع و معادن، علوم، تحقیقات و فنآوری، سازمانهاي مدیریت و برنامهریزی، حفاظت محیطزیست، نمایندگان بخشهای خصوصی مرتبط و مشاوران و خبرگانی از این زمینه را با خود همراه ساخت تا وفاق و همدلی ذینفعان پیلسوختی را ایجاد و حرکت در این زمینه را تسریع و هدفمند سازد.
آنچه در خلال نخستين جلسات اين کميته مورد اتفاق نظر عموم قرار گرفت، ضرورت انجام مطالعات علمي در خصوص ميزان ضرورت فناوري پيل سوختي براي کشور و نحوه مواجه جمهوري اسلامي ايران با آن بود. از اينرو پروژه" مطالعات امکان سنجي – تحليل جذابيت پيلسوختي و تدوين استراتژي آن در توسعه کشور " از سوي کميته راهبري تعريف شده و اجراي آن برعهده "مرکز گسترش فنآوري اطلاعات" (مگفا) قرار گرفت. ضمناً به منظور بررسي و ارزيابي نتايج" مطالعات امكان سنجي – تحليل جذابيت پيل سوختي و تدوين استراتژي توسعه آن در كشور" جلسهای در تاريخ 9/11/83 توسط دبيرخانه كميته راهبري پيل سوختي در محل معاونت امور انرژي با حضور صاحبنظران و علاقمندان پيل سوختي برگزار گرديد.
با توجه به نتایج مطالعات اعضاء کمیته راهبری پیل سوختی و با طی چندین جلسه بحث و بررسی سرانجام پیش نویس سند راهبرد توسعه فناوری پیل سوختی در کشور توسط کمیته راهبری پیل سوختی در کشور توسط کمیته راهبری پیل سوختی تهیه و به هیات محترم دولت ارسال گردید و با اتفاق نظر اعضاء، سند راهبرد ملی توسعه فناوری پیل سوختی در کشور تهیه گردید كه در مورخ3/4/86 به تصويب هيئت محترم دولت رسيد. این سند در راستاي تحقق چشمانداز 20 ساله كشور و با تلاش نظاممند ذينفعان اين فنآوری در يك بازه 15ساله، تدوین گردید. " برنامهریزی عملیاتی" بهمنظور اجرای سند و نیل به چشماندازهای ترسیم شده نیز در وزارت نیرو تدوین شده است.
در صورت تحقق چشمانداز مندرج در این سند، منافع و دستاوردهاي متنوعی براي كشور به بار خواهد آمد که به برخی از آنها اشاره میشود:
• كمك به توسعه پايدار بخش انرژي از طريق كاهش مخاطرات اجتماعي و زيستمحيطي ناشي از رشد روزافزون مصرف انرژيهاي فسيلي در كشور
• افزايش پايداري، امنيت، پيكسايي و تنوعبخشي شبكه انرژي كشور از طريق كاربرد گسترده فنآوری پيلسوختي در توليد غيرمتمركز انرژي الكتريكي
• امكان بهرهگيري مستمر و مؤثرتر از منابع تجديدپذير انرژي با استفاده از مولدهاي پيلسوختي، صيانت از منابع انرژي فسيلي كشور و بهرهبرداري از اين منابع با راندمان بالاتر
• كمك به ايجاد و توسعه بازارهاي جديد داخلي و خارجي منابع گاز طبيعي كشور
حركت بهسوي اقتصاد دانايي محور با حضور در زنجيره تأمين و بازار جهاني فنآوری پيلهاي سوختي راهبردي فنآوریهاي كليدي آن با تأكيد بر مزيتهاي رقابتي و شايستگيهاي محوري بنگاههاي اقتصادي كشور پس از تصويب "سند راهبرد ملي توسعه فناوري پيل سوختي در کشور" در تيرماه سال 86 و ابلاغ اين مصوبه توسط معاون اول محترم رياست جمهور، جلسه اي با حضور فعالان کميته راهبري تشکيل گرديد که بر لزوم شروع فعاليت هاي مرتبط و جديت در پيگيري انجام ترتيبات اجرايي سند و اقدامات آن تاکيد گرديد. همچنين وزارت نيرو مسئول تشکيل دبيرخانه ستاد توسعه فناوري پيل سوختي مي باشد كه جلسات کميته راهبري پيل سوختي را با دعوت از کليه وزارت خانه ها و ارگان هاي عضو تشکيل مي دهد.
http://www.atcce.com
http://www.fcc.gov.ir
http://fa.wikipedia.org
http://www.assaluyeh.com
http://www.suna.org.ir
http://daneshnameh.roshd.ir
www.knowclub.com
/خ
مقالات مرتبط
تازه های مقالات
ارسال نظر
در ارسال نظر شما خطایی رخ داده است
کاربر گرامی، ضمن تشکر از شما نظر شما با موفقیت ثبت گردید. و پس از تائید در فهرست نظرات نمایش داده می شود
نام :
ایمیل :
نظرات کاربران
{{Fullname}} {{Creationdate}}
{{Body}}