آلومینا (1)
آلومینا (1)
آلومینا (1)
مترجم : حبیب الله علیخانی
منبع : راسخون
منبع : راسخون
اکسید آلومینیوم (Al2O3) یک خانواده از ترکیبات غیرآلی با فرمول شیمیایی Al2O3 است. این اکسید یک اکسید آمفوتر مهم است. اکسید آلومینیوم نام های تجاری متنوعی مانند آلومینا، کوراندوم (corundum و.... دارد. نام های تجاری متنوع اکسید آلومینیوم نشان دهنده ی گستره ی وسیع استفاده از این ماده در صنعت است. استفاده ی عمده از اکسید آلومینیوم برای تولید فلز آلومینیوم است. اگر چه این ماده همچنین به عنوان ساینده (به خاطر سختی بالا) و به عنوان یک ماده ی دیرگداز (به خاطر دمای ذوب بالا) استفاده می شود.
کوراندوم عمده ترین فرم کریستالی اکسید آلومینیوم است که در طبیعت وجود دارد. یاقوت سرخ (Ruby) و یاقوت کبود (Sapphire) سنگ های گران بهایی هستند که از کوراندوم تشکیل شده اند. علت وجود رنگ های متنوع در اینگونه آلومینا (کوراندوم) در اثر وجود ناخالصی هاست. یاقوت سرخ، رنگ قرمز خود را به دلیل وجود ناخالصی کروم بدست آورده است. یاقوت کبود به رنگ های مختلفی در می آید. که این تنوع رنگ به خاطر ناخالصی های مختلف مانند آهن و تیتانیم بوجود می آید.
سختی بالای کوراندوم (فراوان ترین فرم کریستالی موجود از آن) که به آن α- آلومینا گفته می شود، باعث شده تا از این ماده به عنوان یک جزء مناسب برای کاربردهای ساینده (abrasive) و ابزار برش (cutting tools) باشد.
بوجود آمدن اکسید آلومینیوم بر روی سطح فلز آلومینیوم عامل حفاظتی در برابر هوازدگی (weathering) است. آلومینیوم فلزی یک ماده ی بسیار واکنش پذیر با اکسیژن اتمسفر است. و یک لایه ی محافظت کننده از آلومینا (به ضخامت 4 نانومتر) در مدت 100 پیکوثانیه بر روی بخش های در معرض هوا ایجاد می گردد. این لایه ی اکسیدی از اکسید شدن تمام آلومینیوم جلوگیری می کند. ضخامت و خواص این لایه ی اکسیدی را می توان بوسیله ی فرآیند آنودایزینگ (anodizing) تغییر داد. برخی از آلیاژها مانند برنزهای آلومینیومی از ویژگی آنودایزینگ استفاده می کنند تا خاصیت مقاومت به خوردگی آنها بهبود یابد. آلومینای بوجود آمده بوسیله ی فرآیند آنودایزینگ حالت آمورف دارد اما می توان بوسیله ی فرایندهایی مانند اکسیداسیون الکترولیتی پلاسما (Plasma electrolytic oxidation)، لایه ی کریستالی از آلومینا بوجود آورد و سختی آلومینا را بالا برد.
آلومینا استحکام دی الکتریک خوبی دارد. این ماده الکترولیت جامد نیست و از این رو مانند اکسید زیرکونیوم (zro2) عمل نمی کند و خواص دی الکتریک آن به فشار اکسیژن بستگی ندارد.
سختی آلومینا در مقیاس موس 9 است. در این طبقه بندی پس از الماس، آلومینا در رتبه ی دوم قرار دارد.
آلومینا همچنین به صورت فازهای دیگر وجود دارد. این فازها را براساس حروف یونانی نامگذاری می کنند. این فازها عبارتند از: θ, δ,ð, χ, η هر کدام از این فازها دارای ساختار کریستالی و ویژگی خاص خود است. البته تمام این فازها، فازهایی میانی و غیرپایدار هستند. پس از حرارت دهی آلومینا و تشکیل این فازها در نهایت فاز α تشکیل می شود.
فاز ð می تواند مقداری در آب حل شود. که حلالیت این فاز نشان دهنده ی نامناسب بودن آن در کاربرد است.
همچنین می توان از ناپایداری برخی از فازهای آلومینا استفاده کرد و از فعالیت های شیمیایی آنها در کاربردهای خاص بهره برد. مثلا می توان از آنها به عنوان پایه کاتالیست و یا حتی کاتالیزور استفاده کرد.
1)گیبسیت (Al(OH)3)
2)بوهمیت (ð -Alo(OH))
3)دیاسپور (α-Alo(OH))
4)هیدروکسید و اکسید آهن
5)کوارتز
6)کانی های رسی
بوکسیت در خاک های سرخ (Laterites) وجود دارد. بوکسیت بوسیله ی فرآیند بایر خالص سازی می شود.
به آلومینای بدست آمده از روش بایر، آلومینای کلسینه شده می گویند. عمل کلسیناسیون در روش بایر در کوره ی دوار صورت می پذیرد. در ابتدای کوره دما پایین است و عمل خشک شدن انجام می شود. و در ادامه عمل تجزیه صورت می پذیرد. ترکیباتی همچون کلرین ها، فلرین ها، بور می توانند دمای تجزیه ی هیدروکسید را کاهش دهند. همچنین این عوامل، عامل جوانه زا برای تشکیل α- آلومینا هستند. وعلاوه بر دمای تجزیه ی هیدروکسید، بر روی شکل ذرات نهایی اثرگذار هستند. هر چه دمای کوره (دمای تجزیه) بالاتر رود، تبدیل می تواند کامل تر صورت گیرد. در دمای 1400 درجه سانتیگراد در حدود 99-90درصد از هیدروکسید به α-آلومینا تبدیل می شود و علاوه بر α آلومینا فاز میانی ð نیز وجود دارد. از این رو برحسب دمای کوره و افزودنی های مختلف، درصد α-آلومینا متفاوت است. در روش بایر حتی می توان آلومینایی با خلوص 99.99 درصد تولید نمود.
2)روش بایر به مخازن بزرگ آب نیازمند است.
3)مصرف آب در روش بایر بالاست.
4)روش بایر انرژی بر است، (برای گرم کردن مخازن آب نیاز به انرژی زیادی داریم).
5)ضایعات، و باطله های روش بایر زیاد است.
6)ورود ناخالصی هایی همچون اکسید سدیم موجب تخریب خواص الکتریکی آلومینا شده و ما را مجبور می کند تا با اعمال فرآیندهای جانبی درصد این گونه ناخالصی ها را کاهش دهیم.
در کاربردهای الکتریکی میزان یون سدیم بسیار مهم است. یون سدیم وارد ساختار آلومینا می شود و به صورت فاز θ درمی آید. این فاز محلولی جامد از اکسید سدیم و آلومیناست که باعث تغییر خواص الکتریکی آلومینا می شود و آلومینا را به یک الکترولیت جامد تبدیل می کند. الکترولیت های جامد با افزایش دما خاصیت رسانایی پیدا می کنند. اکسید سدیم همچنین بر روی نقطه ی ذوب آلومینا تأثیر گذاشته و آن را پایین می آورد. پایین آمدن دمای ذوب آلومینا موجب این مسئله می شود که در دماهای نسبتا پایین بخش هایی از آلومینا ذوب گشته و پس از سردشدن تشکیل فاز شیشه ای می دهد. وجود فاز شیشه ای در برخی بدنه ها مانند بدنه های دیرگداز مضر بوده و باعث کاهش استحکام آنها می شود. پس توجه به خلوص آلومینا در برخی صنایع مانند صنعت دیرگداز و الکترونیک و... ضروری به نظر می رسد.
1)استحکام فشاری بالا
2)سختی بالا
3)مقاومت به سایش بالا
4)مقاومت در برابر حملات شیمیایی بوسیله ی گستره ی وسیعی از مواد شیمیایی حتی در دماهای بالا
5)رسانایی گرمایی بالا
6)مقاومت در برابر شک حرارتی
7)دیرگدازی بالا
8)مقاومت دی الکتریک بالا
9)مقاومت الکتریکی بالا حتی در دماهای بالا
10)شفافیت در برابر فرکانس های اشعه ی میکروویو
11)ماده ی اولیه ی آن بسهولت قابل دسترسی است و قیمت آن دارای نوسان شدید نیست.
عمومی ترین تری هیدرات های آلومینیوم گیبسیت (gibbsite)، بایریت (bayerite) و نوردستراندیت (nordstrandite) هستند. این در حالی است که اکسید متداولتر آلومینیوم (هیدروکسید آن) بوهمیت (boehmite) و دیاسپور (diaspore) هستند.
از لحاظ تجاری مهمترین شکل هیدروکسیدهای آلومینیوم، گیبسیت است اگر چه بایریت و بوهمیت نیز در مقیاس صنعتی تولید می شوند. هیدروکسیدهای آلومینیوم دارای گستره ی کاربرد فراوانی است مثلا از آنها به عنوان افزودنی های ضد شعله در پلاستیک ها و رابرها، پرکننده های کاغذ و درزگیرها، فیلر خمیر دندان، ضد اسید، پوشش های تیتانیا و به عنوان ماده ی اولیه جهت تولید محصولات شیمیایی آلومینوم دار مانند سولفات آلومینیوم، کلریدهای الومینیوم، پلی آلومینیوم کلراید، و آلومینیوم نیترات کاربرد دارد.
منبع انگلیسی مقاله : Bauxites /IDA VALETON
/ن
کوراندوم عمده ترین فرم کریستالی اکسید آلومینیوم است که در طبیعت وجود دارد. یاقوت سرخ (Ruby) و یاقوت کبود (Sapphire) سنگ های گران بهایی هستند که از کوراندوم تشکیل شده اند. علت وجود رنگ های متنوع در اینگونه آلومینا (کوراندوم) در اثر وجود ناخالصی هاست. یاقوت سرخ، رنگ قرمز خود را به دلیل وجود ناخالصی کروم بدست آورده است. یاقوت کبود به رنگ های مختلفی در می آید. که این تنوع رنگ به خاطر ناخالصی های مختلف مانند آهن و تیتانیم بوجود می آید.
خواص
سختی بالای کوراندوم (فراوان ترین فرم کریستالی موجود از آن) که به آن α- آلومینا گفته می شود، باعث شده تا از این ماده به عنوان یک جزء مناسب برای کاربردهای ساینده (abrasive) و ابزار برش (cutting tools) باشد.
بوجود آمدن اکسید آلومینیوم بر روی سطح فلز آلومینیوم عامل حفاظتی در برابر هوازدگی (weathering) است. آلومینیوم فلزی یک ماده ی بسیار واکنش پذیر با اکسیژن اتمسفر است. و یک لایه ی محافظت کننده از آلومینا (به ضخامت 4 نانومتر) در مدت 100 پیکوثانیه بر روی بخش های در معرض هوا ایجاد می گردد. این لایه ی اکسیدی از اکسید شدن تمام آلومینیوم جلوگیری می کند. ضخامت و خواص این لایه ی اکسیدی را می توان بوسیله ی فرآیند آنودایزینگ (anodizing) تغییر داد. برخی از آلیاژها مانند برنزهای آلومینیومی از ویژگی آنودایزینگ استفاده می کنند تا خاصیت مقاومت به خوردگی آنها بهبود یابد. آلومینای بوجود آمده بوسیله ی فرآیند آنودایزینگ حالت آمورف دارد اما می توان بوسیله ی فرایندهایی مانند اکسیداسیون الکترولیتی پلاسما (Plasma electrolytic oxidation)، لایه ی کریستالی از آلومینا بوجود آورد و سختی آلومینا را بالا برد.
آلومینا استحکام دی الکتریک خوبی دارد. این ماده الکترولیت جامد نیست و از این رو مانند اکسید زیرکونیوم (zro2) عمل نمی کند و خواص دی الکتریک آن به فشار اکسیژن بستگی ندارد.
سختی آلومینا در مقیاس موس 9 است. در این طبقه بندی پس از الماس، آلومینا در رتبه ی دوم قرار دارد.
ساختار
آلومینا همچنین به صورت فازهای دیگر وجود دارد. این فازها را براساس حروف یونانی نامگذاری می کنند. این فازها عبارتند از: θ, δ,ð, χ, η هر کدام از این فازها دارای ساختار کریستالی و ویژگی خاص خود است. البته تمام این فازها، فازهایی میانی و غیرپایدار هستند. پس از حرارت دهی آلومینا و تشکیل این فازها در نهایت فاز α تشکیل می شود.
فاز ð می تواند مقداری در آب حل شود. که حلالیت این فاز نشان دهنده ی نامناسب بودن آن در کاربرد است.
همچنین می توان از ناپایداری برخی از فازهای آلومینا استفاده کرد و از فعالیت های شیمیایی آنها در کاربردهای خاص بهره برد. مثلا می توان از آنها به عنوان پایه کاتالیست و یا حتی کاتالیزور استفاده کرد.
تولید
1)گیبسیت (Al(OH)3)
2)بوهمیت (ð -Alo(OH))
3)دیاسپور (α-Alo(OH))
4)هیدروکسید و اکسید آهن
5)کوارتز
6)کانی های رسی
بوکسیت در خاک های سرخ (Laterites) وجود دارد. بوکسیت بوسیله ی فرآیند بایر خالص سازی می شود.
روش بایر برای تولید پودر آلومینا
به آلومینای بدست آمده از روش بایر، آلومینای کلسینه شده می گویند. عمل کلسیناسیون در روش بایر در کوره ی دوار صورت می پذیرد. در ابتدای کوره دما پایین است و عمل خشک شدن انجام می شود. و در ادامه عمل تجزیه صورت می پذیرد. ترکیباتی همچون کلرین ها، فلرین ها، بور می توانند دمای تجزیه ی هیدروکسید را کاهش دهند. همچنین این عوامل، عامل جوانه زا برای تشکیل α- آلومینا هستند. وعلاوه بر دمای تجزیه ی هیدروکسید، بر روی شکل ذرات نهایی اثرگذار هستند. هر چه دمای کوره (دمای تجزیه) بالاتر رود، تبدیل می تواند کامل تر صورت گیرد. در دمای 1400 درجه سانتیگراد در حدود 99-90درصد از هیدروکسید به α-آلومینا تبدیل می شود و علاوه بر α آلومینا فاز میانی ð نیز وجود دارد. از این رو برحسب دمای کوره و افزودنی های مختلف، درصد α-آلومینا متفاوت است. در روش بایر حتی می توان آلومینایی با خلوص 99.99 درصد تولید نمود.
مشکلات روش بایر
2)روش بایر به مخازن بزرگ آب نیازمند است.
3)مصرف آب در روش بایر بالاست.
4)روش بایر انرژی بر است، (برای گرم کردن مخازن آب نیاز به انرژی زیادی داریم).
5)ضایعات، و باطله های روش بایر زیاد است.
6)ورود ناخالصی هایی همچون اکسید سدیم موجب تخریب خواص الکتریکی آلومینا شده و ما را مجبور می کند تا با اعمال فرآیندهای جانبی درصد این گونه ناخالصی ها را کاهش دهیم.
در کاربردهای الکتریکی میزان یون سدیم بسیار مهم است. یون سدیم وارد ساختار آلومینا می شود و به صورت فاز θ درمی آید. این فاز محلولی جامد از اکسید سدیم و آلومیناست که باعث تغییر خواص الکتریکی آلومینا می شود و آلومینا را به یک الکترولیت جامد تبدیل می کند. الکترولیت های جامد با افزایش دما خاصیت رسانایی پیدا می کنند. اکسید سدیم همچنین بر روی نقطه ی ذوب آلومینا تأثیر گذاشته و آن را پایین می آورد. پایین آمدن دمای ذوب آلومینا موجب این مسئله می شود که در دماهای نسبتا پایین بخش هایی از آلومینا ذوب گشته و پس از سردشدن تشکیل فاز شیشه ای می دهد. وجود فاز شیشه ای در برخی بدنه ها مانند بدنه های دیرگداز مضر بوده و باعث کاهش استحکام آنها می شود. پس توجه به خلوص آلومینا در برخی صنایع مانند صنعت دیرگداز و الکترونیک و... ضروری به نظر می رسد.
ویژگی های کلیدی آلومینا
1)استحکام فشاری بالا
2)سختی بالا
3)مقاومت به سایش بالا
4)مقاومت در برابر حملات شیمیایی بوسیله ی گستره ی وسیعی از مواد شیمیایی حتی در دماهای بالا
5)رسانایی گرمایی بالا
6)مقاومت در برابر شک حرارتی
7)دیرگدازی بالا
8)مقاومت دی الکتریک بالا
9)مقاومت الکتریکی بالا حتی در دماهای بالا
10)شفافیت در برابر فرکانس های اشعه ی میکروویو
11)ماده ی اولیه ی آن بسهولت قابل دسترسی است و قیمت آن دارای نوسان شدید نیست.
هیدروکسیدهای آلومینیوم
عمومی ترین تری هیدرات های آلومینیوم گیبسیت (gibbsite)، بایریت (bayerite) و نوردستراندیت (nordstrandite) هستند. این در حالی است که اکسید متداولتر آلومینیوم (هیدروکسید آن) بوهمیت (boehmite) و دیاسپور (diaspore) هستند.
از لحاظ تجاری مهمترین شکل هیدروکسیدهای آلومینیوم، گیبسیت است اگر چه بایریت و بوهمیت نیز در مقیاس صنعتی تولید می شوند. هیدروکسیدهای آلومینیوم دارای گستره ی کاربرد فراوانی است مثلا از آنها به عنوان افزودنی های ضد شعله در پلاستیک ها و رابرها، پرکننده های کاغذ و درزگیرها، فیلر خمیر دندان، ضد اسید، پوشش های تیتانیا و به عنوان ماده ی اولیه جهت تولید محصولات شیمیایی آلومینوم دار مانند سولفات آلومینیوم، کلریدهای الومینیوم، پلی آلومینیوم کلراید، و آلومینیوم نیترات کاربرد دارد.
منبع انگلیسی مقاله : Bauxites /IDA VALETON
/ن
مقالات مرتبط
تازه های مقالات
ارسال نظر
در ارسال نظر شما خطایی رخ داده است
کاربر گرامی، ضمن تشکر از شما نظر شما با موفقیت ثبت گردید. و پس از تائید در فهرست نظرات نمایش داده می شود
نام :
ایمیل :
نظرات کاربران
{{Fullname}} {{Creationdate}}
{{Body}}