موارد مصرف پرتو درماني در طب زنان
موارد مصرف پرتو درماني در طب زنان
پرتودرماني در طب زنان
زندگي تمام موجودات در عرصه اي تكامل حاصل كرده است كه در آن انرژي تابشي منبع اصلي انرژي ضروري براي بيشتر روند هاي زيستي است. نور خورشيد گرما، نور، و انرژي لازم براي فوتوسنتز گياهان را توليد مي كند و امواج راديويي وسيله اي براي برقراري ارتباط هستند. اين پرتوها براي زندگي موجودات مفيد بوده و در مقادير عادي مضر نيستند. انواع خاصي از پرتوهاي پرانرژي يا يونيزان در اين حد هم بدون ضرر نيستند، ولي به هر حال ابزار لازم جهت تشخيص و يا درمان در طب زنان را فراهم مي كنند. اين پرتوهاي پر انرژي ممكن است براي عناصر زيستي زيان آور باشند، از اين روست كه در سرطان شناسي به كار گرفته مي شوند، چراكه پس از رسانيدن آسيب به بافت ها، بافت سالم در مقايسه با بافت بدخيم به شيوه موثرتري بهبود مي يابد. پرتوهاي فوق، آثار مخربي بر تمامي انواع حيات از گياهان نسبتاً ساده تك سلولي گرفته تا ارگانيسم هاي پيچيده عالي دارند.
تغيير حاصل از پرتوهاي يونيزان ممكن است اندكي پس از اينكه موجود زنده در معرض آن قرار گرفت كاملاً واضح و با چشم غير مسلح قابل رويت باشند، اما در بسياري از موارد در معاينه معمولي آثار پرتو بر ارگانيسم قابل رديابي نيست. تغييرات حاصل از پرتو ممكن است آنقدر كوچك باشد كه فقط با آزمايش هاي شيميايي و ميكروسكوپي قابل يافتن باشد. آثار ناشي از پرتو همچنين ممكن است تا سالها بروز نكند و يا ممكن است در نسل بعدي ارگانيسم پرتو ديده يافت شود.
پرتو حاصل از تست هاي تشخيصي، پرتوتابي درماني ، و پرتوهايي كه تصادفاً از محيط اطراف به شخص مي رسند ممكن است همگي مضر باشند. اگر چه اغلب شانس آسيب مختصر است، احتمال آسيب در اثرمواجهه را در مقابل اطلاعات بدست آمده بايد مد نظر داشت. با كنترل خطرات محيطي بايد از موجهه تصادفي افراد كاسته شود.
ماهيت و آثار پرتوهاي يونيزان
پرتوهاي آزاد شده از ايزوتوپ هاي راديواكتيو (براي مثال، راديوم، سزيوم و ايريديوم) براي درمان بسياري از بدخيمي ها بكار مي رود. در طي چهل سال گذشته دستگاههايي ساخته شده اند كه قادرند شدت هاي بالاي انرژي تابشي (radiant) را توليد كنند (براي مثال [دستگاههاي سوپرولتاژ و مگاولتاژ])، كه اين دستگاهها دردرمان بدخيمي ها كاربرد وسيع دارند. دستگاههايي كه انرژي بيش از يك ميليون الكترون ولت (IMeV) توليد مي كنند بيشتر مورد استفاده هستند و عبارتند از ژنراتورهاي كبالت، بتاترون ها (betatrons) و شتاب دهنده هاي خطي (linear accelerators) (جدول 1).
ماهيت فيزيكي و شيميايي
پرتوهايي كه از يك هسته اتمي در حال تخريب به وجود مي آيند پرتوهاي (y) خوانده مي شوند.و آنهايي که از خارج از هسته اتم نشات مي گيرند و در اثر بمباران يک هدف مناسب همچون تنگستن (tungsten)توسط ذرات داراي انرژي بالا (الکترون ها )به وجود مي آيند پرتوهاي xخوانده مي شوند. با رسيدن اين الكترون ها كه با سرعت بالايي حركت مي كنند به اطراف هسته اتم هاي ماده هدف، الكترون هاي مذكور از مسير خود منحرف شده، در نتيجه انرژي به صورت پرتوي الكترومعناطيسي آزاد مي شود. پرتوهاي x آزاده شده ممكن است داراي انرژي صفر تا حداكثر انرژي ممكن كه به وسيله انرژي كينتيك (kinetic) الكترون هاي impinging تعيين مي شود، باشند. دستگاههايي چون بتاترون (betatron) قادرند الكترونهاي با سرعت هاي بالا توليد كنند، در نتيجه پرتوهاي x توليد شده داراي انرژي بالايي هستند. در صورتي كه تعداد زيادي الكتروني impinging در اين روند شركت داشته باشند، طيف وسيعي از انرژي پرتوهاي x توليد خواهد شد.
برخي پرتوهاي x هنگامي توليد مي شوند كه الكترون هاي impinging با سرعت بالا يك الكترون را از اربيتال اتم هدف بيرون مي اندازند (يونيزاسيون). جاي اين الكترون كه ممكن است از يك لايه خارجي تر پر يم شود وطي اين انتقال است كه پرتوx توليد مي شود. انرژي فوتوني اشعه x بيانگر اختلاف سطح الكترون لايه داخلي و خارجي است.
پرتوهاي گاما وايكس را مي توان مجموعاً فرتون ناميد. آنچه از نظر زيست شناسي اهميت دارد، انرژي فرتون هاست نه منبع وجود آورنده آنها. تعامل فرتون ها با ماده از طريق سه مكانيسم اتفاق مي افتد: اثر فوتوالكتريك، افتراق compton و توليد جفتي (pair production). تمام پروسه هاي فوق به يونيزاسيون مولكولهاي داخل ماده هدف و يا تشكيل راديكالهاي آزاد مي انجامد. از بمباران آب با فوتون هاي پرانرژي اتم هاي آزاد هيدروژن و راديكالهاي آزاد هيدروكسيل به وجود مي آيد(شكل 2).
نزديك به نصف اتم هاي هيدروژن (H) با راديكال هاي هيدروكسيل (OH) مواجه شده و توليد پراكسيد (H2O2) مي كنند. در پرتوتابي آب توسط الكترون ها يا فوتون ها تعداد بسيار كمي از اتم هاي H راديكالهاي OH آنقدر به هم نزديك هستند كه قبل از جدا شدن ازهم دوباره با هم واكنش مي كنند. در حضور اكسيژن (O2) اتم هاي (H) با آن واكنش داده راديكال (HO2) ايجاد مي كنند. مولكول اخير كمتر از راديكال OH واكنش نشان مي دهد و آب حاصل به H2O2 تبديل مي شود. اين مولكولهاي برانگيخته (excited) و يونيزه ثابت نيستند و با پروتئين ها و ديگر مواد كليدي داخل سلولي واكنش مي دهند. بسياري از رويدادهاي ديگر نيز ممكن است در اثر بمباران فوتوني اتفاق بيافتند: ممكن است مولكولهاي با زنجيره بلند از هم جداشده، دوباره به هم متصل شوند، تجمع (aggregate) تشكيل شود، و ممكن است يك ساختار حلقه اي شكل بدون نظم خاصي از هم پاشيده شود. برخي پيوندهاي شيميايي ممكن است در مقابل اكسيداسيون مستعد غير فعال شدن باشند و در نتيجه ظرفيت علمي (Funcitonal capactiy) كاهش خواهد يافت. تمام تغييرات شيميايي ذكر شده ممكن است در نهايت به آسيب زيستي سلول بيانجامد.
جدول 1:مود الیته های رادیاسیون خارجی
مولالیته |
ولتاژ |
منبع |
ولتاژ پایین (سطحی) |
KV 150-85 |
اشعه ایکس |
ولتاژ متوسط (ارتوولتاژ) |
KV 400-180 |
اشعه ایکس |
سوپر ولتاژ |
8MV - 500KV |
اشعه ایکس |
مگا ولتاژ |
بیشتر از انرژی سوپر ولتاژ |
بتاترون سینکروترون شتاب دهنده خطی |
آثار زيستي
پس از آسيب به وسيله يونيزاسيون، سلول بالغي كه در سطح فعاليت متابوليكي پائيني قرار دارد ممكن است از نظر ظاهري تحت تاثير قرار نگرفته باشد، اما سلول فعال و در حال رشد ممكن است كاملاً تخريب شود. سلولهايي كه در حال رشد ممكن است كاملاً تخريب شود. سلولهايي كه در حال تقسيم هستند نسبت به سلول هايي كه در فاز استراحت در فواصل ميتوزها قرار دارند، بيشتر مستعد آسيب هستند.
فشار (tension) پايين اكسيژن، دهيدراسيون، انجماد (freezing) و حضور مواد احيا كننده ممكن است سلولها را از آسيب ناشي از پرتو محافظت كنند.
آسيب در اثر پرتوتابي به صورت تورم سلول، واكوئوليزه شدن سيتوپلاسم (vacuolization)، تشكيل سلول غول آسا (giant) و تكه تكه شدن يا جدا شدن تقريبي (partial) كروموزم ها درهنگام تقسيم بروز مي كند (شكل 3). پس از يك فاز تاخيري (latent) شواهدي از مرگ سلولي به همراه از دست دادن ساختارهاي سيتوپلاسمي و هسته اي ديده مي شود. پاسخ سلول عبارت خواهد بود از يك واكنش التهابي تيپيك :ادم، اتساع و پروليفراسيون مويرگ ها، ارتشاح (infilration) سلولهاي گرد (round)، و رشد فيبروبلاست ها. اين واكنش سريع با فيبروز تدريجي، از دست دادن عروق (avascularity) و محصور شدن منطقه آسيب ديده (wall off) دنبال مي شود. تغييرات بسيار دير رس عبارتند از :contracture و scarification به همراه شدن (inelastic) و اتساع عروق كه توسط استروماي بدون عروق pinch off شده اند.
تخريب انتخابي بافت ها پايه و اساس راديولوژي درماني است. سلولهاي نئوپلاستيك هميشه راحت تر از سلولهاي والد (parent cells) بافت هاي طبيعي اطراف كشته مي شوند. شدت (magnitude) اختلاف در استعداد [آسيب] به پرتوتابي بين بافت طبيعي و سرطاني در تعيين اينكه آيا قسمتي كه براي پرتودرماني در نظر گرفته شده است را مي توان با پرتودرماني در نظر گرفته شده است را مي توان با پرتودرماني ريشه كن كرد (eradicate) نقش بزرگي دارد. اين تفاوت نسبي در استعداد بافت ها براي [آسيب توسط پرتو (radivulnerability) را اصطلاحاً حساسيت به پرتو (radiosensitiy) مي نامند. حساسيت به پرتو و قابليت درمان توسط پرتو (radioresistant) كه در معرض دوز بالاي پرتو موضعي قرار مي گيرند قابل درمان هستند ولي تومورهاي حساس به پرتو كه در شروع درمان ويا مدت كوتاهي پس از شروع درمان متاستاز وسيع داده اند را فقط مي توان به صورت موضعي كنترل كرد. يك مثال خوب از تومورهاي مقاوم به پرتو كه نسبتاً قابل درمان است كارسينوم سلول سنگفرشي گردن رحم است. اين بدخيمي يكي از قابل درمان ترين تومورهاست زيرا سلولهاي بافت طبيعي گردن رحم و واژن در اطراف آن به پرتوبسيار مقاوم هستند و مي توان دوز بالايي از پرتو را براي درمان آن بكار برد. مورد اخير يعني بكارگيري دوز بالاي پرتو راديوم كه بوسيله بافت هاي اطراف تحمل مي شود، مساوي با موفقيت در درمان است.
در نتيجه تغييرات شيميايي در پاسخ به پرتوتابي، مولكولهاي بسيار بزرگ سيستم زيستي متحمل تغييرات ساختاري گوناگوني مي شود كه ممكن است فونكسيون (عملكرد) آنها را تغيير دهد. در اثر پرتو، مولكولهاي بزرگ به قطعه هاي كوچكتر شكسته مي شوند. اتصال متقاطع (cross-linking) يكي ديگر از تغييرات ساختاري است. در مولكولهاي بزرگ كه تا حدي هم انعطاف پذير هستند در صورتي که در اثر پرتو، لوكوس (locus) فعالي از نظر شيميايي روي آنها بوجود آيد و اين نقطه با نقطه ي فعال ديگري تماس حاصل كند اتصال متقاطع اتفاق مي افتد. در صورتي كه اتصال متقاطع گسترده باشد، مولكول مذكور قادر نخواهد بود عملكرد طبيعي خود را انجام دهد و ممكن است ديگر در سيستم كارايي نداشته باشد. بسياري از مولكولهاي درشت (macromolecules) پس از cross-linking داخل مولكولي (پيوند گروههاي مختلف شيميايي) به شكل سخت (rigid) كه عامل اتصال اغلب اتم هاي هيدروژن هستند در آمده و در نتيجه يك ساختاري سه بعدي تشكيل مي شود. پيوندهاي هيدروژني از ضعيف ترين پيوندهاي موجود در مولكول بوده و اولين پيوند هايي هستند درآمده كه مي شكنند. چنين تغييرات ساختاري ممكن است به تغييرات اساسي در خصوصيات بيوشيميايي مولكول منجر شوند.
پرتوتابي بر مولكولهاي همچون پروتئين ها، آنزيم ها، اسيدهاي نوكلئيك و برخي ليپيدها آثار عميقي داشته، مي تواند ارگانيسم يا عضو مربوطه را دستخوش تغيير سازد. تغيير شيميايي اوليه در كسري از ثانيه روي مي دهد و به ندرت مستقيماً قابل رديابي است. برخي از اين تغييرات شيميايي تقريباً بلافاصله ترميم مي شوند؛ ديگر تغييرات كه در ساختارهاي به نسبت كم اهميت تر اتفاق مي افتند ممكن است سبب تغييراتي شوند كه به ندرت قابل تشخيص هستند. در بيشتر موارد، فاصله بين تغيير شيميايي و ظاهر شدن اثر زيستي حاصل از آن پيچيده و مبهم است. جذب و استفاده از انرژي به وسيله سلول يك زنجيره پيچيده رويدادهايي را تشكيل مي دهد كه بسياري از پروتئين ها در آن دخالت دارند. آسيب حاصل از پرتوتابي به اين پروتئين هاي حياتي ممكن است به از بين رفتن پيوستگي ديواره اي سلولي و مرگ سلول بيانجامد.
در محاسبه ي آسيب بافتي، كميت پرتوتابي با رونتگن (R) يا سانتي گري (cGy) بيان مي شود. رونتگن واحد مواجهه (exposure) و سانتي گري واحد دوز جذب شده است. در مورد پرتوهاي x و y مواجهه به اندازه يك رونتگن (1R) به ميزان جذبي معادل يك سانتي گري (1cGy) منجر مي شود. براي سالها راد (rad) به عنوان واحد پرتو جذب شده در نظر گرفته مي شد، بويژه وقتي پزشكان در مورد پرتوتابي خارجي (external) بحث مي كردند. يك راد معادل صد ارگ (100ergs) در گرم انرژي جذب شده توسط بافت است. در حال حاضر گري (gray) در سراسر جهان و در انتشارات علمي و حرفه اي بكار مي رود (1Gy=100rad=100cGy).
اگر چه تغييرات گوناگون موفولوژيك و عملكردي (functional) در سلولهاي پرتوديده شرح داده شده است، ليكن شواهد عيني و استنباطي حاكي از آن است كه آسيب هسته سلول بيشترين نقش را در مرگ سلولي دارد. طبق محاسبات انجام شده 1x10به توان6 cGy براي آسيب ديواره سلول لازم است، حال آنكه اختلالات كروموزومي و جهش ممكن است در دوزهاي پايين تر پرتو بوجود آيند. از آنجا كه فقط چند صد سانتي گري براي كشتن سلولهاي در حال تزايد لازم است. منطقي به نظر مي رسد كه تغييرات هسته اي حاصل از دوزهاي پايين مسوول مرگ سلول باشند.
آثار پرتو بر چرخه سلولي
G2, S, G1 و M كه به ترتيب بيانگر فاز پيش سنتتيك (Presyntheic) سنتز DNA، فاز پس سنتتيك (postsynthetic) و ميتوز هستند. تجزيه و تحليل كمپارتماني (compartmental) چرخه سلولي مبتني بر مشاهده رويداهاي مرفولوژيك داخل سلولي مبتني بر مشاهده رويدادهاي مرفولوژيك داخل سلول است. اول روند ميتوز است. در يك جمعيت مناسب در حال رشد تصاعدي از سلولهاي پستانداران كه به طور مناسبي رنگ آميزي شده باشند، مي توان نسبت ميتوز را محاسبه كرد و اندكس ميتوتيك (mitotic index) را كه عبارتست از نسبت سلولهاي در حال ميتوز به كل سلولها را بدست آورد. در بسياري از سلولهاي پستانداران، اندكس ميتوتيك بين 2 تا 7 درصد است. دوره دوم [در چرخه سلول] دوره سنتز DNA است. براي تخمين نسبت سلولهايي كه در مرحله سنتز DNA هستند، سلولهاي در حال رشد تصاعدي در معرض يك پيش شاز DNA كه با ايزوتوپ مناسب نشاندار شده
است قرار مي گيرند. در طي مواجهه كوتاه مدت، سلولها با پيش ساز نشاندار شده، فقط سلولهايي كه درحال رپليكاسيون DNA هستند ماده مذكور را برداشت كرده و قابل تشخيص مي باشند. اندكس سلولهاي نشاندار كه عبارتست از نسبت سلولهاي در حال سنتز DNA حدود 50 تا 60 درصد است.
درك اصول رشد سلول از اهميت خاصي برخوردار است. در جمعيت سلولهاي در حال رشد تصاعدي، نسبت سلولها در هركدام از اجزاي چرخه سلولي ثابت است. نسبت سلولها در هر كدام از اجزاي چرخ سلولي تقريباً متناسب با زمان لازم جهت تكميل شدن فعاليت ويژه سلول در آن مرحله است. بين هر تقسيم، رويدادهاي ماكرومولكولي مهمي اتفاق مي افتد و تخمين دقيق از [هركدام از اجزاي] چرخ سلولي با تكنولوژي جديد به سرعت انجام مي شود.
با مطالعات راديوبيولوژيكي جنبه هاي اشكال گوناگوني از حساسيت به پرتو (radiosensitivity) شناخته شده است. هنگامي كه سلولها درحال طي روند سنتز DNA هستند، بيشترين مقاومت به پرتو را از خود نشان مي دهند. زماني كه سلولها در فاز G2 يا ميتوز هستند، بيشترين حساسيت را به پرتو دارند. اگر فاز G1 كوتاه باشد سلولها در اين مرحله به پرتو حساس هستند و بالعكس در صورتي كه فاز مذكور طولاني باشد ممكن است افزايش مقاومت به اشعه ديده شود.
پرتوتابي را بايد عاملي دانست كه برچرخه سلولي تاثير ويژه اي دارد. به نظر مي رسد كه پاسخ سلولهاي برخي تومورهاي انساني به پرتوتابي به فازهاي مختلفي كه سلولهاي تومور در چرخه سلولي دارند وابسته است. پاسخ بافت طبيعي زمينه نيز به عوامل كينتيک مشابهي وابسته مي باشد.
اثر اكسيژن
اكسيژن در تعيين حساسيت به پرتو نقش مهمي دارد و سلولهاي پستانداران 2/5 تا 3/5 برابر در غياب اكسيژن در مقابل پرتو مقاوم تر هستند. تفاوت فوق enhancement ratio اكسيژن ناميده مي شود. اينكه آيا اثر فوق امكان كنترل موضعي تومورهاي بزرگ انساني را نيز فراهم مي كند هنوز تحت بررسي است، همانطوريكه نقش اكسيژن در تعيين نتايج پرتودرماني هنوزدر دست مطالعه است.
آثار ژنتيكي
منطقي به نظر مي رسد كه مواجهه با پرتو، ميزان جهش را در انسان افزايش دهد. چنين انتظاري بيشتر بر مطالعات انجام شده و بر روش ها استوار است. تخمين زده مي شود، دوزي كه جهش خودبخودي را در انسان دوبرابر مي كند بين ده تا صد cGy باشد. در صورت مواجههحاد با پرتو،مقدار احتمالي بين 15 تا30cGYوبراي مواجهه ي مزمن با پرتو حدود صد cGy است. كميته ژنتيك كميسيون انرژي اتمي پيشنهاد مي كند كه هيچ انساني نبايد در طول زندگي در معرض بيش از ده سانتي گري (cGy) پرتو قرار گيرد. با بكارگيري سپرهاي محافظ مناسب براي جلوگيري از پخش شدن پرتو، اصلاح فيلم هاي راديولوژي و شدت دهنده هاي تصوير (image intensifier) مي توان با ميزان مواجهه كمتري از ارگانهاي داخلي تصاوير راديولوژي تهيه كرد. در جدول 2، ميزان متوسط دوز پرتو رسيده به جنين و غدد جنسي مادر كه در روش هاي تشخيصي متداول به كار مي رود، نشان داده شده است.
جدول 2:دوز متوسط پرتو رسيده به جنين و غدد جنسي مادر در اثر تست هاي تشخيصي.
آزمون |
دوز رسيده به جنين و غدد جنسي مادر |
گرافي اندام تحتاني |
1 |
گرافي مهره هاي گردن |
2 |
گرافي جمجمه |
4 |
گرافي قفسه سينه |
8 |
گرافي لگن |
750 |
فلوروسکوپي قفسه سينه |
70 |
کوله سيستو گرافي |
300 |
گرافي مهره هاي کمري |
275 |
گرافي شکم |
به ازاي هر عکس185 |
گرافي هيپ |
100 |
پيلوگرافي داخل وريدي يا رتروگراد |
585 |
گرافي دستگاه گوارش فوقاني |
330 |
گرافی دستگاه گوارش تحتانی |
465 |
آثار [پرتو] بر جنين
ناهنجاري هاي چشمگيراغلب هنگامي اتفاق مي افتند كه جنين در مراحل اوليه دوره ارگانوژنز (Organogenic period) باشد، هر چند هيپوپلازي سلول، بافت و حتي ارگان نيز در صورتي كه دوز پرتو به حد كافي بالا باشد ممكن است در طي دوران ارگانوژنز، جنيني و نوزادي روي دهد. در تمام مراحل حاملگي مواجهه با 50cGy به احتمال زياد با آسيب
جنيني همراه است كه عبارتند از : مرگ قبل از مرحله لانه گزيني، ناهنجاري در طي مراحل اوليه ارگانوژنز، و حذف سلول ها و هيپوپلازي بافتي در طي مراحل مختلف دوره جنيني. مطالعات حيواني نشان مي دهد كه تمام جنين هايي كه پس از لانه گزيني درمعرض 100cGy يا بيشتر پرتو قرار گرفته اند درجاتي از اختلال رشد را نشان مي دهند. يافتن و تشخيص آثار مخرب ناشي از پرتوتابي در جنين داخل رحم با دوزهاي پايين (كمتر از 10cGy) بسيار دشوار است، چرا كه بعيد است دوزهاي كمي چنين آسيبي ايجاد كنند و از طرفي بروز طبيعي چنين ناهنجاريهاي زياد ديده مي شود. از نظر باليني جذب دوز 10cGy توسط جنين در دوره حاملگي به عنوان يك سطح آستانه براي القاي نقص مادرزادي در نظر گرفته مي شود و در كمتر از اين مقدار پرتو، آسيب بسيار كاهش مي يابد. از اعمال تشخيصي توسط پرتو x(جدول 2) در دوران حاملگي مگر در موارد اورژانس شديد بايد خودداري شود. در زنان سنين باروري براي جلوگيري از آسيب هاي وارده به جنين در مراحل اول جنيني مي توان تست هاي تشخيصي را بالافاصله پس از شروع دوره قاعدگي انجام داد.
طبقه بندي پرتوهاي يونيزان كه كاربرد درماني دارند
پرتو x زماني حاصل مي شود كه الكترونهاي سريع به ماده برخورد مي كنند. هر دستگاهي كه براي توليد اشعه x طراحي شده است بايد داراي منبعي از الكترون ، روشي براي شتاب بخشيدن به الكترون ها (بكارگيري ولتاژ بالا، شتاب دادن با يك شتاب دهنده خطي)، و هدفي كه الكترون ها با آن برخورد كنند تا پرتو x توليد شود، باشد.
اتم هاي مواد راديواكتيو ناپايدار (unstable) بوده، به طور خودبخودي دچار تخريب راديواكتيو مي شوند كه در نتيجه آن پرتو چه به صورت امواج الكترومغناطيس (فرتون ها) و چه ذرات به هر دو صورت امواج الكترومغناطيس (فوتون ها) و چه ذرات به هردو صورت توليد مي شود. يك مثال، استفاده پزشكي از emission ايزوتوپ راديواكتيو در كبالت 60(60Co) ديده مي شود كه در ماشين هاي درمان از دور (Teletherapy) به كار مي رود. يك مثال براي منبع آزاد سازي ذرات در پزشكي فسفر راديواكتيو (35p) است كه از خود ذرات b آزاد مي كند كه همان الكترونها هستند.
اصول پرتودرماني
پرتوتابي خارجي
پرتوتابي هاي سوپرولتاژ در مقايسه با ارتوولتاژ آثار كمتري بر پوست دارند. در پرتوتابي سوپرولتاژ انرژي بيشتري توليد شده و پراكنده شدن به سمت جلو (در جهت پرتوهاي اوليه) در محل جذب پرتو بيشتر و پراكندگي پرتو به اطراف كاهش مي يابد. با پرتوتابي سوپرولتاژ بيشترين يونيزاسيون در سطح زير اپيدرم اتفاق مي افتد. براي مثال با درمان از دور توسط 60Co حداكثر يونيزاسيون در حدود پنج ميلي متر زير سطح اتفاق مي افتد و دوز رسيده به سطح ممكن است فقط 40% از اين حد ماكزيمم باشد.
منحني ايزودوز (isodose) خطي است كه نقاطي در بافت را كه دوزهاي مساوي از پرتو دريافت مي كنند را به هم وصل مي كند. شكل 6-53 منحني ايزودوز براي 60Co در 22-MeV و ماشين 220MeV را باهم مقايسه مي كند. براي ماشين 60Co دوز حداكثر نزديك به سطح است (0/5 سانتي زير پوست) و افت انرژي هم در مقايسه با ماشين 22-MeV كه حداكثر دوز آن درست زير سطح است، (4cm) بوده افت انرژي آن تدريجي است. سريعتر است. در يك عمق مشخص، بوسيله ماشين MeV-22 به دوز بالاتري از پرتو مي توان دست يافت، البته بدون در نظر گرفتن اثر پرتو در پوست و بافت زير پوستي، اين ماشين هاي با انرژي بالا به ويژه براي درمان تومورهاي عمقي و افراد چاق مناسب هستند.
با افزايش انرژي پرتوتابي، قدرت نفوذ آن هم افزايش مي يابد. با افزايش انرژي فوتون ها و به تبع آن الكترونها مسافت بيشتري را در ماده جذب كننده طي مي كنند. درصد پرتوتابي به ويژه در عمق بافت در مقايسه با دوز سطحي با افزايش انرژي افزايش مي يابد. مزيت اخير سوپوولتاژ و مگاولتاژ در اهميت باليني آنها در درمان تومورهاي موجود در عمق ارگانيسم است(مثل كار سينوم مثانه و گردن رحم). در چنين مكانهايي با بكارگيري دوز سطحي به وسيله ارتوولتاژ مشكل و غير ممكن است.
شكل 7:منحني هاي ايزودومر از يك برنامه دوميداني به وسيله يك شتابدهنده خطي
شكل 8. منحني ايزودومر از يك الگوي درماني چهار ميداني روي يك ماشين 22-MeV TSD، فاصله تومور-منبع
تكنيك چهارميداني (four fields) اصطلاحاً تكنيك جعبه خوانده مي شود و براي كاهش دوزهاي زيرپوستي (subcutaneous) و ميزان بافت طبيعي در معرض دوز بالاي پرتو به كار مي رود. براي بيماري با فاصله قدامي خلفي 24 انتي پرتو به كار مي رود. براي بيماري با فاصله قدامي خلفي 24 سانتي متر حجمي معادل 6000cc پرتوي به ميزان تجويز شده (مثلاً 500cGy) در ميدانهاي موازي و مخالف به كار مي رود، اما با برنامه درماني چهار ميداني حجم مذكور به حدود 3500cc كاهش مي يابد. اگر چه حجم كال بافت طبيعي پرتو ديده با ميزاني از پرتو در روش چهارميداني بيشتر است،
پخش شدن پرتو در اين روش واكنش بافت طبيعي را كاهش مي دهد. نياز به درمان تمام ميدان ها به صورت روزانه به دفعات در مقالات مطرح شده است. شكل 8 منحني هاي ايزودوز تكنيك چهارميداني با استفاده از دستگاه MeV-22 را نشان مي دهد.
در محدوده ي سوپرولتاژ ميزان جذب پرتو به وسيله استخوان تقريباً مثل جذب توسط آن و بافتهاي نرم است، اما در محدوده ارتوولتاژ جذب توسط استخوان بيشتر از بافت نرم است. بافت عروقي همبندي چسبيده به استخوان اطراف مجاري هاورس دوز بيشتري از پرتو را به خاطر استاتيك بودن آن دريافت مي كنند. دوز بيشتر جذب شده فوق به علت تخريب عناصر استئوبلاستي و آسيب سيستم عروقي خطر نكروز استخوان را افزايش مي دهد. با افزايش انرژي پرتو مي توان آثار مشابهي بر تومور بوجود آورد، بدون آنكه بافت هاي طبيعي اطراف آسيب ببينند. به علاوه بروز آسيب مخاطي و پوستي نيز كاهش مي يابد و بافت هاي عروقي همبندي هم كمتر آسيب مي بينند. خاصيت تحمل بالاي بافت هاي همبندي عروقي به دوز بالاي پرتو توسط پرتوتابي سوپرولتاژ از عواملي است كه امكان درمان همراه پرتودرماني و جراحي را بدون افزايش ريسك جراحي (البته به جز عوارض جراحي به تنهايي) را فراهم مي كند.
پرتوتابي موضعي
صرفنظر از منبع پرتو كه ممكن است الكترومغناطيس يا فوتون باشد، ميزان انرژي انتقال يافته با افزايش فاصله از منبع دچار واگرايي مي شود. اين واگرايي باعث كاهش انرژي شده و رابطه فوتون با قانون مجذور معكوس كه عبارتست از كاهش دوز پرتو در هرواحد به نسبت مجذور فاصله از منبع انرژي تعريف مي شود. براي مثال، دوز پرتو در نقطه اي با فاصله دو سانتي متر از منبع فقط يك چهارم ميزان آن در يك سانتي متري است. دوز عمقي (درمقايسه با دوز سطحي) با بكارگيري Ovoid هاي واژينال بزرگتر همراه با براكي تراپي كانسر سرويكس افزايش مي يابد. در اين وضعيت، قانون معكوس مجذور يعني كاهش شدت پرتو متناسب با افزايش فاصله موثر واقع مي شود.
پرتوتابي موضعي براي تومورهاي كوچك با حاشيه هاي مشخص كه از لحاظ باليني محدوده كوچكي بايد تحت
پرتوتابي قرار گيرد، مناسب است. براي پرتوتابي حجم بزرگتري از بافت بهتر است ازپرتوتابي خارجي استفاده شود. در گذشته، از ايزوتوپ راديوم در لوله ها (tubes) و سوزن ها (needles) به صورت موضعي در دستگاه تناسلي استفاده مي شود. تنها نكته منفي مواد دردسترس كنوني (جدول 4)، نيمه عمر كوتاه آنهاست. بسياري از اين مواد را مي توان به مواد جامدي چون سراميك و فلزهاي مختلف اضافه كرد و ديگر نياز نيست مثل راديوم به صورت پودر يا گاز به كارگرفته شوند. لوله ها و سوزن هاي راديوم حاوي پودر راديوم هستند و بسياري از مشتقات حاصل از تلاشي آن به صورت گاز در داخل همان محفظه ها قرار دارند. بنابر علل فوق، در اكثر موسسات سزيوم جايگزين راديوم شده است.
جدول 4:ایزوتوپ هایی که معمولاً در پرتو درمانی کاربرد دارند.
ایزوتوپ |
انرژی (MeV ) |
نیمه عمر |
137CS |
0/662 |
30 سال |
50cO |
173/11 |
3/5 سال |
125I |
35 0/0-27 0/0 |
60 روز |
192 Ir |
47 /0 |
74 روز |
226Ra |
8 /0 |
1620 سال |
222RN |
8/0 |
83/3 روز |
182 Ta |
8/0 |
115 روز |
در صورتي كه شدت پرتو با افزايش عمق بافت كاهش پيدا كند، همانطور كه در پرتوتابي موضعي ديده مي شود، از نظر تئوري بافت نزديك به منبع پرتو ممكن است بدون آسيب به بافت هاي اطراف درمان شود. موثر بودن توزيع پرتو به اين شيوه، بستگي زيادي به چگونگي بكارگيري منبع پرتو به اين شيوه، بستگي زيادي به چگونگي بكارگيري منبع پرتو دارد. بكارگيري بينابيني (interstitial )منبع راديواكتيو از بكارگيري داخل حفره اي آن مشكل تر است. بكارگيري منابع متعدد برخلاف تاباندن پرتو از يك منبع خارجي و يا منبع داخل حفره اي تاباندن پرتو از يك منبع خارجي و يا منبع داخل حفره اي با جاگذاري صحيح اغلب به يك الگوي با همگوني كمتر (less homogenous) مي انجامد. از طرفي بافت هاي در معرض خطر ممكن است پرتو بيشتري ببينند.
درمان بينابيني عبارتست از استفاده از سوزنهاي سزيوم يا ايريديوم كه در بافت تومور كاشته مي شود. به علت ميزان بالاي پرتو در اطراف منبع، براي پوشش دادن يك حجم بزرگ معمولاً به تعداد زيادي منبع پرتو نياز است. منحني هاي ايزودوز را مي توان براي چنين ايمپلانت هايي رسم كرد ايمپلانت هاي سوزني را اغلب براي انتقال دوز بالاي موضعي در ضايعات واژن به كار مي برند. استفاده از tempate واژينال باعث شده تا ايمپلانت سوزني راديواكتيو در منابع طرفي ضايعات گردن رحم و واژن استفاده بيشتري شود (شكل10).
پرتوهاي يونيزان در درمان بيماريهاي زنان
تخمك گذاري در موارد عقيمي و براي درمان بيماريهاي اگزمايي و ديگر بيماريهاي فرج (vulva) استفاده مي شد. در زنان قبل از سن يائسگي يك دوز واجد 400 تا 500 سانتي گري براي قطع دائمي قاعدگي كفايت مي كند، وليكن يك دوز 1200 تا 2000 سانتي گري در ده روز تا دو هفته براي قطع كامل توليد استروئيدها در افراد جوانتر كافي است. در حال حاضر نيز در برخي موارد از جمله بيماران مبتلا به منوراژي شديد كه مناسب جراحي نيستند، از جمله زنان قبل از يائسگي و زنان مبتلا به لوسمي حاد به همراه ترومبوسيتوپني و منوراژي كاربرد دارد. به هر حال در حال حاضر به جز موارد ياد شده بالا تمام شرايط خوش خيم با روشهايي غير از پرتوتابي درمان مي شوند.
شکل 10:دياگرام يک کاشت بينابيني براي درمان سرطان سرويکس مرحله iiibبا يک اپليکاتور seyed-Noblett
تولرانس ارگانهاي لگني
گردن كورپوس رحم توان تحمل دوزهاي بالاي پرتو را دارند. بافت هاي مذكور در مقايسه با هر بافت ديگري در بدن با همان حجم مساوي دوز بيشتري از پرتو را تحمل مي كنند. دوزهاي 20000 تا 30000 سانتي گري در دو هفته به راحتي تحمل مي شود. سطح قابل توجه فوق امكان بكارگيري ميزان بالاي پرتو براي كنترل سرطان گردن رحم را فراهم مي كند. تحمل غير معمول بافت هاي رحم و واژن به پرتو باعث موفقيت درمان ضايعات گردن رحم با راديوم و سزيوم است. علاوه بر تحمل بافتي به نظر مي رسد اپي تليوم و رحم و واژن توانايي قابل توجهي در بهبودي آسيب ناشي از پرتو دارند.
در مقايسه با ديگر اندام هاي موجود در لگن به جز روده ي كوچك، سيگموئيد، ركتوسيگموئيد و ركتوم، حساسيت بيشتري به آسيب ناشي از اشعه دارند. فراواني دفعات مواجهه بيشتري به آسيب ناشي از اشعه دارند. فراواني دفعات مواجهه با پرتو در روده بزرگ اغلب به نزديكي آن با ايزوتوپ به كار گرفته شده، دوز كلي به كار گرفته شده براي درمان و توسط پرتوي خارجي يا داخل حفره اي بستگي دارد. درصورت استفاده از پرتوي خارجي به تنهايي، روده بزرگ حساس ترين ساختاري به پرتوتابي خواهد بود. واكنش حاد زودرس به پرتو با اسهال و زورپيچ (tenesmus) مشخص مي شود. يكي از تظاهرات ديررس آسيب كه پس از 6 تا 12 ماه پس از درمان ديده مي شود عبارتست از درد مزمن لگن به همراه تنگي لومن روده و انسداد نسبي. حداكثر دوز قابل تحمل به وسيله ركتوم به عوامل متعددي از جمله زمان و دوز بكارگرفته شده پرتو خارجي و منبع موضعي ايزوتوپ بستگي دارد. براساس محاسبه kottmeier دوز رسيده به مثانه و ركتوم از طريق تكنيك استكهلم در بكارگيري راديوم داخل حفرات از طريق تكنيك استكهلم در بكارگيري راديوم داخل حفرات حدود 4000 سانتي گري در سه سانتي متر مكعب ركتوم و مثانه مي باشد.
براساس بيشتر بررسي ها مثانه مختصراً تحمل بيشتري نسبت به ركتوم در مقابل پرتو دارد. براساس يك قانون سرانگشتي (rule to rhumb) يا fletcher پيشنهاد كرده حدود بالاي پرتوتابي مطرح شده و به طور غير مستقيم تحمل مثانه و ركتوم به اين صورت تخمين زده مي شود: مجموع دوز مركزي توسط پرتو خارجي به اضافه تعداد ميلي گرم ساعت (mgh) راديوم و سزيوم به كار رفته توسط تكنيك هاي داخل +1142
حفره اي نبايد از 10000 تجاوز كند. البته موضوع فوق فقط در صورتي كه از دستگاه داخل حفره اي fletcher-suit استفاده شود صدق مي كند. در صورتي كه دوز بالايي از راديوم يا سزيوم به صورت داخل حفره اي براي يك ضايعه كوچك به كار رود ميزان پرتو خارجي به كار رفته بايد حداقل مقدار ممكن نگهداشته شود. بالعكس در صورتي كه ضايعه بزرگ باشد و الگوي ساختاري واژن نيز مناسب نباشد مي توان از يك دوز داخل حفره اي حداقل و دوز مركزي خارجي (external) بسيار بالا (7000cGy- 6000) استفاده كرد.
از آنجا كه پرتوتابي كارسينوم گردن رحم مقدمتاً با هدف محتويات لگن انجام مي شود، فقط قسمت هاي محدودي از روده كوچك درگير مي شوند. درمان طبيعي روده كوچك حركت ثابتي دارد و همين موضوع باعث مي شود كه قسمت هاي مختلف روده در معرض پرتوي زياد قرار نگيرد.
درصورتي كه در اثر جراحي قبلي لگن لوپ هايي از روده كوچك دچار چسبندگي شده باشند، ممكن است قسمتي از روده كه مستقيماً در معرض پرتو قرار گرفته آسيب ببيند. آسيب حاصل معمولاً پس از يك سال يا بيشتر از تكميل پرتوتابي علامت دار مي شود و به صورت تنگي لومن به همراه يا بدون زخم مخاطي تظاهر مي كند.
آسيب وارده به بافت طبيعي ممكن است دائمي باشد. هنگامي كه ناحيه اي از بدن در معرض دوزهاي مخرب تومور قرار گيرد، بافت هاي طبيعي اطراف دچار آسيب شده به ترتيبي كه حتي اگر بيمار تا چندين سال زنده بماند بافت هاي مذكور فقط تا حدي ترميم مي شوند. براساس تخمين راديوبيولوژيست ها فقط 5 تا 20 درصد از بافت هاي طبيعي آسيب ديده ترميم مي شوند. بافت هاي طبيعي اطراف تومور پرتوديده تا حد قابل توجهي باعث معلوليت بيمار مي شود اما در صورتي كه بيمار بار ديگر دچار بدخيمي در همان ناحيه شود، پرتوتابي اضافي ممكن است آسيب غير قابل قبول به بافت هاي طبيعي اطراف وارد كند. عموماً لازم است همان ناحيه مجدداً براي تخريب تومور پرتوتابي نشود، چرا كه نتيجه حاصله، از بين رفتن وسيع بافت طبيعي در آن ناحيه خواهد بود.
طرح درمان
درمانگر [براساس يافته هاي ذكر شده] بايد درباره هدف درمان تصميم بگيرد كه بيمار را درمان كند (Cure) يا مشكل بيمار را تسكين بخشد (palliation)، بايد روش هاي درماني مختلف بررسي شود. روش درمان با در نظر گرفتن احتمال تركيب پرتوتابي،جراحي يا شيمي درماني انتخاب مي شود. درمان انتخابي فوق ممكن است تاثير چشمگيري بر حجم ناحيه تحت درمان و دوز اشعه بكار رفته باشد. تعيين دوز بهينه پرتو و حجم تحت درمان به موقعيت آناتوميك، نوع تومور از نظر بافت شناسي، مرحله (stage) و ديگر خصوصيات تومور و همچنين بافت طبيعي اطراف تومور بستگي دارد.
سرطان شناس مسؤول پرتودرماني بايد همكاري نزديك با متخصص زنان داشته باشد تا روش هاي درماني گوناگون را بررسي كند. فيزيكدانان هم در تعيين طرح درمان و دوزيمتري (dosimetry) براي اطمينان حاصل كردن از دقت درمان نقش موثري دارند. ارزيابي دوره اي از وضعيت عمومي بيمار، پاسخ تومور به درمان و وضعيت بافتهاي طبيعي در طي درمان ضروري است. تصميم نهايي براي انجام پرتودرماني با سرطان شناس پرتودرمان است.
درمان پذيري توسط پرتو (radiocurability)
برطرف كردن هيپوكسي تاكنون نتايج موفقي نداشته اند. ترميم آسيب هاي مخرب (subethel) در اكثر رده هاي سلولي تومورها ديده مي شود. آسيب هاي بالقوه كشنده از يك رده به رده ديگر سلولي متفاوت است و به نظر مي رسد كه با درمان پذيري باليني تومور ارتباط مستقيم داشته باشد و سلولهايي كه درمان پذيري كمتري دارند بيشترين بهبودي از حالت بالقوه كشنده (sublethal) را از خود نشان مي دهند. ارتباط خاصي بين پاسخ دهي تومور به پرتوتابي ودرمان پذيري وجود ندارد و ضايعات به نسبت، مقاوم به پرتو و قابل درمان در بسياري از انواع تومورها ديده مي شود.
سرطان گردن رحم
در درمان سرطان گردن رحم، تركيب دقيق و محتاطانه پرتوتابي خارجي و كاربرد درون حفره اي راديوم يا سزيوم نقش سرنوشت سازي دارد. درباره ضايعات مرحله IB كه وجود متاستاز منطقه اي پيداست، مي توان از راديوم درون حفره اي به تنهايي استفاده كرد كه كلاً 10000mgh را در دو دوز منقسم به روش fletcher آزاد مي سازد. براي ضايعات مرحله III، به ويژه در افرادي كه الگوي ساختاري واژن آنها امكان استفاده از راديوم را فراهم نمي آورد، پرتوتابي خارجي ممكن است جزء اصلي برنامه درمان باشد و از پرتوتابي كل لگن با دوز شش تا هفت هزار cGy نيز مي توان استفاده كرد. توزيع بيماري را بايد به وسيله لمس و روشهاي تشخيصي ارزيابي نمود و كاربرد درون حفره اي راديوم و پرتوتابي خارجي بايد با چنان دقتي همراه باشد كه بيشترين دوز بطور مسقتيم به تومور تابيده، ميزان عوارض و از كارافتادگي (morbidity) به حد قابل قبولي برسد.
شکل 11:رادياسيون در فواصل مختلف از يک منبع نقطه اي 1mgراديوم و منبع لوله اي 1mg ،2-cmراديوم.
پژوهشگران بريتانيايي به منظورتعيين ميزان كمي مقدار پرتوپي كه به برخي مناطق لگن مي رسد، همزمان با تكميل سيستم manchester(به تكنيك هاي پرتوتابي درون حفره اي نگاه كنيد)،نقاط شاخص و كليدي خاصي را به عنوان نقاط A و B تعيين نمودند. آنها نقطه اي را دو سانتي متر بالاتر از مخاط، در فورنيكس جانبي واژن و دو سانتي متر خارج از مجراي رحمي به عنوان نقطه A و نقطه ديگري را 5 سانتي متر خارجي از مجرا و با استفاده از همان شاخص ها به عنوان نقطه B تعريف كردند. اين كار محاسبه دوز راديوم و اشعه ايكس تابيده شده و دوز جذب شده در مثلث پاراسرويكال يعني نقطه A و منطقه گره هاي لنفاوي لگني (يعني نقطه B) را امكان پذير مي سازد. پيشنهاد شده است كه يك دوز هفت تا هشت هزار cGy براي مهار كارسينوم سلولهاي سنگفرشي گردن رحم لازم است و بيشتر كساني كه از سيستم Manchester پيروي مي كنند حداقل 7000cGy را براي نقطه A تجويز مي كنند. اين موضوع، نگراني درباره جاي دادن راديوم يا سزيوم را كاهش داد، چرا كه مطلوب اين است كه دوز ركتال را در نقطه A در حد 6000cGy نگهداريم كه جايگذاري دقيق راديوم اين امر را ممكن مي سازد.
تكنيك هاي پرتوتابي به درون حفرات بدن
تكنيك stockholm
شكل 12.کاربرد در درمان سرطان گردن رحم.(A)تکنيک stockholm(B) تکنيک paris (c) تکنيک manchester
تكنيك paris
شکل 13:طرح قرار گرفتن بخش tandem وovoid مرغي در سرطان رحم نقاط AوBمشخص شده اند.
تكنيك manchester
سيستم Fletcher-suit، سيستم تعدي شده اي است كه به دليل قدرت تطابق آن با افترلود (پس بار)، با استقبال گسترده اي روبرو شده است. بسياري از سازمان ها استفاده از راديوم را كنار گذاشته و در همه اپليكاتورهاي خود از ايزوتوپ ارزان تر (سزيوم) با دوزهاي معادل با (راديوم) استفاده مي كنند.
پرتوتابي لگني خارجي
تكنيك امكان پرتوتابي يكدست به ديواره لگن و (بافت هاي) اطراف رحم را فراهم نموده، قدرت تحمل ساختارهاي خط وسط را در برابر تكنيك هاي درون حفره اي آينده حفظ مي كند، پرتوتابي سوپرولتاژ يا مگاولتاژ نيز از اين مزيت برخوردار است و در صورت امكان بايد براي پرتوتابي كل لگن و بافت هاي اطراف رحم به كار برده شود.
درمان انفرادي و خاص هر بيمار به وسيله كاربرد عاقلانه باريكه پرتوخارجي و پرتوتابي درون حفره اي مي توان منجر به ميزان بقاي رضايت بخشي گردد (جداول 5 و 6). ديگر ملاحظات موثر بر درمان سرطان گردن رحم در فصل 49 مورد بحث قرار گرفته اند.
شکل 14:منحني هاي همدوز (isodose)در دو مورد که مي توان از مقادير مختلف راديوم استفاده کرد،دوز آزاد شده توسط تکنيک Manchester را در اعماق مختلف نسان مي دهند.در هر يک فدوز در نقطه aصد در صد يا xسانتي گري (cGy) محاسبه مي شود.ساير اعداد درصد دوزي را که به ساير اعماق مي رسند نشان مي دهند (A)اپليکاتور استاندارد براي يک واژن بزرگ.(B)اپليکاتور استاندارد براي يک واژن کوچک.دوز در نقاط و با استفاده ازovoid هاي واژينال بزرگتر بهبود مي يابد.با استفاده از هاي بزرگ تر ،ضمن دستيابي به حداکثر تحمل بافت طبيعي مثانه ،رکتوم و مخاط واژن ،مي توان پرتوهاي بيشتر به بافت هاي اطراف رحم تاباند (که در نقاط A وB نشان داده شده است.)
سرطان واژن و فرج
جدول 5.کارسينوم اپيدرموئيد گردن رحم:ميزان بقاي 5 ساله عاري از بيماري صرفاً توسط پرتو درماني
مرحله |
تعداد بیماران |
0/0 |
IA |
29 |
100 |
IB |
302 |
87/7 |
IIA |
249 |
70/9 |
IIB |
249 |
66/3 |
III |
226 |
36/7 |
جدول 6.آدنوکار سينوم گردن رحم،ميزان بقاي 5 ساله عاري از بيماري.
مرحله |
تعداد بیماران |
0/0 |
IB |
|
|
<3cm |
91 |
88 |
3-4cm |
65 |
65 |
4/1-5/9 cm |
37 |
62 |
>6cm |
22 |
45 |
iia |
22 |
38 |
iib |
38 |
28 |
iii |
46 |
31 |
گرچه برخي سرطان هاي بزرگ سلول سنگفرشي فرج به نحو چشمگيري به پرتودرماني پاسخ داده اند ولي پرتوهاي يونيزان را به عنوان درمان انتخابي اين ضايعه در نظر نمي گيرند. بافت هاي طبيعي واژن و گردن رحم مي توانند دوزهاي بالاتري از اشعه را تحمل كنند ولي فرج بيشترين حساسيت را به پرتوهاي يونيزان نشان مي دهد. برخي از زيست پرتوشناسان (radiobiologists) گمان مي كنند كه اين ناحيه حاوي مقادير زياد و نامتناسبي از سرخرگهاي انتهايي است كه آسيب ناشي از پرتوتابي به فرج به ناچار با التهاب شديد فرج همراه است كه تقريباً همواره نيازمند قطع درمان مي باشد.
برداشت جراحي ضايعه فرج به وسيله
همچنان دزمان انتخابي است. تركيب منطقي جراحي وسيع ناحيه اي و به دنبال آن پرتوتابي به گره هاي لنفاوي منطقه مبتلا، مزايايي دارد، بويژه در بيماراني كه قادر به تحمل برداشت جراحي گره هاي لنفاوي منطقه مبتلا نيستند.
كارسينوم آندومتر
مرحله بندي ضايعات آندومتري در حال حاضر ماهيت جراحي داشته،اصولاً نياز به انجام زودرس پرتودرماني خارجي و درون حفره اي را پيش از جراحي، برطرف مي كنند. مرحله بندي جراحي ابتدايي اين امكان را فراهم مي آورد تا پرتودرماني تنها در موارد يافته هاي آسيب شناختي پرخطر، مانند: تهاجم عمقي به ميومتر، درگيري آندوسرويكس يا متاستاز به ضمائم انجام شود.
برخي سازمان ها فرض را براين مي گذارند كه پرتوتابي به تنهايي،درمان كافي مرحله II سرطان آندومتر با گسترش به مجراي آندوسرويكس مي باشد، ولي بر سر اين فرض اختلاف نظر وجود دارد. بيشتر متخصصين باليني ترجيح مي دهند كه مورد مشكوك به مرحله II را ابتدا با جراحي و سپس با پرتودرماني متناسب با يافته هاي جراحي درمان نمايند. شايد برخي از بيماران مبتلا به تومور بزرگ گردن رحم به هيستركتومي راديكال نياز داشته باشند.
پرتوتابي خارجي بعد از جراحي
(آناپلاستيك)، احتمال عود لگني بيماري را قوياً افزايش مي دهد و ضرورتاً بايد پرتوتابي كل لگن انجام شود. دوز مرسوم بين 4000 تا 5000 cGy در چند دوز منقسم مي باشد كه درطي 6-5 هفته تجويز مي شود. دليل واضح و بدون ابهامي مبني بر بهبود (ميزان ) بقاء (به وسيله اين روش) وجود ندارد ولي به نظر مي رسد مهار عود لگني بيماري ، به ويژه عود در (كاف) (Caff) واژن كاملاً مستند باشد.
راديوايزوتوپ هاي بعد از عمل
كاربرد يك ايزوتوپ در طاق واژن پس از جراحي
هيستركتومي اوليه همراه با سالپنگواووفوركتومي (Salpingoophorectomy) دو طرفه را توصيه مي كنند. اگر يك ناحيه مخفي از بيمار تمايز نيافته، درگيري پنهان گردن يا ايسم رحم، تهاجم عمقي به ميومتر يا متاستاز به ضمائيم پيدا شد، پرتوتابي كل لگن مورد استفاده قرار مي گيرد. اگر هيچ يك از شاخص هاي درگيري گره هاي لنفاوي يافت نشد، مي توان از پرتودرماني پس از جراحي اجتناب نمود يا ظرف يك هفته پس از هيستركتومي، به كمك انواع اپليكاتورهاي واژينال cuff irradiation كرد. cuff irradiation ، كه به وسيله مخروط هاي ترانس واژينال نيز انجام مي شود،روش نسبتاً ساده اي بوده و معمولاً بدون (نياز به) انجام بيحسي اضافي، صورت مي پذيرد. در بيماران پرخطري كه به دليل كارسينوم آندومتر، متحمل هيستركتومي شده اند، هيچ بررسي اتفاقي آينده نگري جهت تعيين ارزش واقعي cuff irradiation به تنهايي يا پس از پرتوتابي خارجي انجام نشده است. در واقع كاربرد cuff irradiation در اين بيماران جنبه inutative داشته، بر پايه نتايج اثبات شده مشروح استوار نيست.
پرتودرماني سرطان عود كننده
چون پرتوتابي كل لگن تاكنون مورد استفاده قرار نگرفته است توجه بايد به تعيين حدود عود به وسيله گيره هاي فلزي و تاباندن پرتوتابي خارجي به ناحيه مبتلا پس از جراحي معطوف شود. اگر عود در راس گنبد واژن باشد، درمان به اندازه ضايعه بستگي خواهد داشت. اگر قدرت تحمل بافت طبيعي تحت تاثير پرتودرماني قبلي قرار نگرفته باشد، بايد پرتوتابي خارجي را مد نظر داشت. در مورد عود واژينال، معمولاً كشت بينابيني (منبع اشعه) يا استفاده از مخروط ترانس واژينال به پرتوتابي خارجي اضافه مي شود. Dia Saia و همكاران در مورد عودهاي مشابهي كه پس از هستركتومي قبلي رخ مي دهند، درباره يك تكنيك كاشت باز در زمان لاپاروتومي گزارشي منتشر كردند (شكل 18). بدبختانه اين عودهاي لگني اغلب در محدوده فيبروز و بافت بدون عروق ثانويه به پرتودرماني قبل رخ داده و پاسخ عود لگني به درمان سيستميك با پروژستين يا شيمي درماني از پاسخ عود در مناطق دوردست كمتر بوده، چندان رضايت بخش نيست.
كارسينوم تخمدان
ريشه كني همه تومورهايي كه با چشم غير مسلح ديده مي شوند از راه جراحي، به نحو چشمگيري پاسخ به پرتودرماني را تقويت مي كند. Dembo نتايج بقاء را در يك دسته از بيماران كه اندك بيماري باقيمانده آنها پس از جراحي، به وسيله پرتودرماني شكم و لگن (و بدون شيمي درماني) بهبود يافته، عالي گزارش كرد. انجام بررسي هاي اثبات كننده، ضروري است.
گرچه سرطان حجيم تخمدان درون لگن ممكن است به نحو رضايت بخشي به پرتوتابي لگني استاندارد پاسخ دهد، وجود مناطق بزرگ باقيمانده بيماري در بخش فوقاني شكم نمايانگر يك معضل مهم پرتودرمانگرها (راديوتراپيست ها) مي باشد. هر گاه كل شكم در معرض خطرباشد، اين مشكل چهره نشان مي دهد. زيرا تحمل كل شكم به پرتوتابي اندك بوده، دوزي كه مي توان با اطمينان به شكم تاباند، خيلي پايين تر از دوز نابود كننده توموراست،شكم دوز بيشتر از 2500cGy را تحمل نمي كند. fletcher پيشنهاد كرد با تكنيك باريكه متحرك به حفره صفاق اشعه داده شود، كه در اين تكنيك قطعات كوچكي از شكم به نحو منظمي در معرض پرتوهايي با شدت بالا قرار مي گيرند. اين تكنيك از نظر تئوري عوارض و ناخوشي را در سطح قابل قبولي نگه داشته و از نظر زيست پرتوشناسي امكان تاباندن دوزهاي موثر بزرگ تري را فراهم مي آورد. بسياري از سازمان ها نتوانسته اند اين تكنيك را با موفقيت در پيش گيرند و ارزش اين روش همچنان نامعلوم است (شكل 19).
فعلاً تكنيك درماني سرطان تخمدان مرحله I وII شامل تزريق اندك 32P كلوييدي به درون حفره صفاق پس از جراحي مورد علاقه است. اگر همه بيماري قابل مشاهده توسط چشم غير مسلح، پس از هيستركتومي و سالپنگواووفوركتومي دو طرفه برداشته شود و تنها كشت هاي ميكروسكوپي از بقاياي سلولي براي درمان پس از جراحي باقي بماند، فسفر 32(32P) پرتوهاي بتا منتشر مي كند كه تنها تا عمق 4-1 ميلي متر نفوذ مي كند،مواد كلوييدي به سطوح صفاق چسبيده يا توسط آنها فاگوسيته شده،مي توانند پرتوهاي يونيزان خود را در همان محل به سلولهاي بدخيم روان كنند. هيچ بررسي اتفاقي آينده نگري منتشر نشده است كه نشانگر برتري اين روش به شيمي درماني باشد.
تدابير درماني اصلاح شده
سيتوتوكسيك دماهاي بالا، قدرت تكنيكي روز افزون و دقت روبه رشد ابزارها كه بافت را گرم و ميزان گرمايش را دقيق بررسي مي كند. و رواج مفهوم درمان چند ابزاري _که در آن هيپرترمي ،پرتو درماني و شيمي درماني به شكل رژيم هاي دو ابزاري يا سه ابزاري با هم تركيب مي شوند) كه ما را در قرن آينده به تبديل يا اين ابزار كمكي درماني به يك روش ارزشمند، اميدوار مي كند.
بعيد است كه هيپرترمي به تنهايي قادر به ايجاد پسرفت عمده تومور با قدرت پيشگويي كننده كافي باشد كه بتواند آنرا به يك ابزار درماني كمك عملي تبديل كند،ولي همانگونه كه توسط چندين الگوي پيش باليني و به كمك سرطانهاي سطحي كه مي توان آنها را به اندازه كافي گرما داد، اثبات شده است. هيپرترمي در شرايط بهينه مي تواند تاثير پرتودرماني را تشديد نمايد. بين هيپرترمي و انواعي از داروها كه به DNA سلولي آسيب مي رسانند يا با سوخت و ساز انرژي سلول تداخل مي كنند، يك واكنش متقابل قوياً مثبت وجود دارد. مشاهدات اوليه درباره واكنش متقابل سه ابزار درماني؛ پرتوتابي، هيپرترمي و شيمي درماني شديداً دلگرم كننده بوده است.
پرتودرماني جزء لازم درمان شفابخش سرطان است ولي قدرت تحمل بافت هاي طبيعي كه پرتوها از آنها مي گذرند و مقاومتي كه توده سلول هاي تومور به تدريج دربرابر اشعه كسب مي كنند. قابليت شفاي برخي تومورها، بويژه تومورهايي را كه مراحل باليني بالاتري دارند، محدود مي سازند. ممكن است پژوهشهاي زيست پرتوشناسي و فيزيك پرتوها روشهايي فراهم كند كه ضمن كاهش عوارض و ناخوشي، ميزان شفاي (بيماري) را ازدياد بخشد. درمان پوياي (dynamic) كامپيوتري، داروهاي محافظ در برابر پرتوها، اكسيژن پرفشار، پرتوتابي ذره اي و داروهاي حساس كننده سلول به هيپوكسي در حال ارزيابي باليني بوده، برخي از نتايج مقدماتي آنها دلگرم كننده است.
از ميان تدابير مختلف بهبود نتايج باليني پرتودرماني مرسوم سرطان، كاربرد پرتودرماني ذره اي باردار يا غيرباردار جذابيت ويژه اي دارد.اينگونه پرتوتابي ها، بسته به تابش ذره اي مورد درخواست،مزيت زيست شناختي، مزيت توزيع دوز يا هر دو را با هم دارا مي باشند.نوترون هايي سريع كه ذرات بدون باري هستند، خواص زيست پرتوشناسي بهتري نسبت به پرتوهاي ايكس يا اشعه گاما دارند.
درميان ذرات باردار، پروتون ها و يون هاي هليوم ويژگي هاي توزيع دوز بهتري را به معرض نمايش مي گذارند، پيون (Pion) و يون هاي سنگين مانند: كربن 12، نئون 20، سيليكون 28 و آرگون 40 مزاياي توزيع دوز و مزاياي زيست شناختي بالقوه اي دارند. رده بندي تئوري پرتوهاي ذره اي نشان مي دهد كه يون هاي سنگين و پيون ها ممكن است براي درمان بهتر باشند.گرچه احتمالاً بيشتر نظريه درست است، ولي رابطه نتايج باليني (با نظريه) ضعيف بودن و چندان قابل اثبات نمي باشد. بيشتر پژوهش هاي باليني درباره پرتوتابي ذره اي در ايالات متحده بر نوترون ها، پروتون ها و يون هاي هليوم متمركز بوده است. انتخاب ها عمدتاً براساس ملاحظات مادي و قيمت ها تعيين مي شوند. يون هاي سنگين و پيون ها از نظر تئوري بهتر از نوترون ها، پروتون ها و يون هاي هليوم هستند ولي توليد آنها بسيار گران تر تمام مي شود. به رغم سختي توليد و ساير مشكلات، پرتودرماني ذره اي در بررسي هاي محدود و كوچك اثر چشمگيري بر چند سرطان داشته است، ولي جهت اثبات اين موضوع به بررسي هاي اضافي نياز مي باشد.
منبع:مامايي و بيماريهاي زنان دنفورث،جلد دوم.
/ج
{{Fullname}} {{Creationdate}}
{{Body}}