کاربرد انواع مختلف فولاد (2)
منبع : راسخون
عمدهترين صادركنندگان و واردكنندگان فولاد
در اين بين اطلاع از وضعيت كشور ايران نيز خواندني و جالب توجه است. ايران در سال 2001 توانست 9,6 ميليون تن فولاد توليد كند كه از اين مقدار تنها 600 هزارتن آن را به كشورهاي ديگر صادر نمود؛ اين درحالي است كه ايران با واردات 7,4 ميليون تن فولاد رتبه 17 جهاني واردكنندگان فولاد را در اين سال به خود اختصاص داد. البته در حال حاضر ايران توانسته است سقف صادرات فولاد خود را به حدود 5,1 ميليون تن در سال برساند.
جايگاه فولاد ايران در خاورميانه
نكته جالب ديگر در مورد كشورهاي خاورميانه، درصد توليد و مصرف جهاني فولاد در اين كشورهاست. در سال 2002، كشورهاي خاورميانه تنها موفق به توليد 2,1 درصد از فولاد جهان شده بودند و اين در حالي است كه مصرف حدود 2 درصد فولاد جهان براي اين كشورها گزارش شده است. اين امر مي تواند به عنوان يك مزيت براي صنعت فولاد ايران مطرح باشد به اين صورت كه در كشورهاي همسايه ايران، فولاد زيادي توليد نمي شود ضمن اينكه اين كشورها از بازار مصرف نسبتاً خوبي نيز برخوردار هستند. بنابراين براي محصولات فولادي كشور مي-توان يك بازار مصرف بسيار مناسب در كشورهايي مثل عراق، بحرين، افغانستان، پاكستان و حتي تركمنستان، آذربايجان و ارمنستان پيش-بيني كرد.
توليدات چدن در ايران و جهان
اشتغال زايي صنعت فولاد
البته لازم به ذكر است كه نيروي كار به كار گرفته شده در صنعت فولاد كشور، با كشورهاي پيشرفته و صنعتي بسيار متفاوت است؛ بهطوريكه در اين كشورها براي توليد هر ميليون تن فولاد به طور مستقيم در حدود 1500 نفر نيروي كار لازم است ولي در ايران، براي توليد يك ميليون تن فولاد به نيروي كار مستقيمي در حدود 4 الي 5 هزار نفر نياز است كه در حدود 3 برابر آمار جهاني كشورهاي پيشرفته است.
کاربرد فولاد در قالبهاي تزريق پلاستيک
نقش فولاد در قالب سازي
چنانچه در شکل ملاحظه مي شود بيشتر هزينه هاي توليد، توسط قالب به-صورت غير مستقيم وابسته به فولاد است که با عدم انتخاب فولاد مناسب، باعث تحميل هزينه هاي اضافي به قالب شود.
خصوصيات قطعه که براي ساخت قالب و انتخاب فولاد مربوطه مؤثر است عبارتند از:
• صافي سطح
• گرين کاري
• خورنده بودن يا ساينده بودن جنس قطعه
• دقت ابعادي
• تيراژ توليدي
• زمان ساخت
جنس قطعات پلاستيکي متنوع است و با توجه به خواص مختلف مواد و به فولادهاي متفاوت براي ساخت قالب، نياز است. در زير برخي ازانواع پلاستيک هاو خصوصيات فولادهاي مناسب براي آنها ارائه شده است.
PC(Poly Carbonate),PMMA(Polymethyl Methacrylate Acrylic) - :
- POM (Polyoxymethylene), PA(Nylon):
- PA(Naylon)+GF:
-PP(Polypropylene):
- PP(Polypropylene), ABS(Acrylonitrile Butadiene Styrene):
- PVC (Polyvinyl Chloride):
با عدم انتخاب فولاد صحيح، عمر قالب کوتاه مي شود و قطعه توليدي کيفيت مطلوب را نخواهدداشت که منجر به ساخت مجدد قالب و هزينه هاي اضافي مي شود.
خواص فولاد
خصوصيات مکانيکي فولادها
- چکشخواري(Ductility Brittleness): قابليت شکل پذيري ماده درحالت پلاستيک را بدون خطر شکست، چکشخواري مي گويند.
- خزش (creep): مدت زماني که طول مي کشد که قطعه اي، تحت تنش کششي تغيير شکل دائم، داشته باشد.
-چقرمگي(Toughness): مقدار کار لازم براي شکستن واحد حجم ماده است.
- سختي(Hardness): مقاومت در مقابل فرو رفتن مواد ديگر در سطح قطعه را سختي يا مقاومت در مقابل خراش مي گويند.
- استحکام در دماي بالا: خواص مکانيکي قطعه نبايد با افزايش دما تغيير محسوسي کند.
خصوصياتي از فولاد كه در قالب هاي پلاستيک در نظر گرفته مي شود و با توجه به انتظارات ما از هر کدام از آنها، نوع فولاد انتخاب مي-شود.
• قابليت ماشينکاري
• قابليت پوليشکاري
• عمليات حرارتي
• عمليات بهسازي سطح
• مقاوم در برابر سايش
• مقاوم در مقابل خوردگي
• مقاوم در مقابل تنش هاي فشاري
• قابليت جوشکاري
• چقرمگي
فولادهاي قالب هاي پلاستيک
پيش سخت شده (Pre Hardened)
آنيل(Annealed)
پير سخت شونده(Age Hardening)
فولادهاي پيش سخت شده (Pre Hardened):
مزاياي اين فولادها
- عدم ايجاد ترک هاي ريز در اثر عمليات حرارتي: معمولاًٌ فولادها بعد از عمليات حرارتي در اثر شوک هاي حرارتي تابيده و در سطح آنها ترک هاي ريزي بهوجود مي آيد. نظر به اينکه اين گونه فولادها پيش از عرضه به بازار توسط توليد کننده فولاد سختکاري شده اند و بعد از فرايندهاي ماشينکاري نيازي بهعمليات حرارتي ندارند، ترک هاي ريز و پسماند تنش هاي حرارتي در فولاد، وجود نخواهد داشت و طول عمر آن بالاتر خواهدبود.
معايب اين فولادها
- با توجه به اينکه سختي اينگونه فولادها بهتدريج از سطح به عمق کم مي شود، قالب هايي که توسط اينگونه فولادها تهيه مي شوند داراي سختي يکنواخت نيستند.
- براي رزين هايي که بسيار ساينده يا داراي دماي پروسه بسيار بالا هستند، مناسب نيستند.
فولادهاي پير سخت شونده(Age Hardening)
باتوجه بهاينکه دماي گرم شدن آن بههنگام عمليات حرارتي حدود 500 الي 600 درجه سانتيگراد است، فولاد دچار تابيدگي يا ترک هاي سطحي نمي شود و مي توان آن را بدون فرايندهاي جانبي، استفاده کرد.
ثبات ابعادي اينگونه فولادها در طولاني مدت خوب است.
مراحل بهره برداري از فولاد
ماشينکاري نيمه نهايي يا نهايي
عمليات حرارتي
ماشينکاري نهايي چنانچه مورد نياز باشد
مراحل فرايندهاي بهره برداري اينگونه فولادها بيشتر از پيش سخت شده است.
فولادهاي آنيل
مراحل بهره برداري از فولاد
ماشينکاري اوليه
عمليات حرارتي
ماشينکاري نهايي
مزاياي اين فولادها
مقاوم بودن نسبت به سايش و چقرمگي
معايب
فولادهای ماریجینگ ( 18 % Ni)
این فولادها كه تعلق به خانواده آلیاژهای پایه آهن دارند . ابتدا تحت پروسه استحاله مارتنزیت قرار می گیرند و سپس به وسیله پیری یا رسوب سختی دنبال می شوند . كه كلمه Maraging از دو كلمه Martensite و Aging گرفته شده است .
فولادهای ماریجینگ دارای 18 % Ni به دو كلاس گسترده تقسیم می شوند. كه بستگی به عناصر تقویت كننده در آنالیز شیمیایی آنها دارد . فولاد ماریجینگ اورجینال در اوایل 1960 معرفی شد ، كه كبالت به عنوان عنصر تقویت كننده و استحكام بخش ( 7-12% ) در فولاد ماریجینگ 18 % Ni بكار برده می شد . در اوایل دهه 70 كار بر روی این فولادها كمرنگ شد . كه دلیل آن افزایش قیمت كبالت بود كه منجر به نوع جدیدی از فولادهای ماریجینگ شد ، این دسته تیتانیوم را به عنوان عامل اصلی تقویت كننده به همراه داشتند. درجه تقویت كبالت یا " C-type 18 Ni Maraging " به وسیله حرف " C " در شناسائی این كلاس انتخاب می شود ؛ همچنین درجه استحكام تیتانیوم یا " T-type 18 Ni Maraging " را با حرف " T " نشان می دهند.
این دو نوع فولاد با توجه به میزان استحكام آنها به 200 ، 250، 300، 350 درجه پیری طبقه بندی می شوند و به طور C-200 و T-200 آنها را نمایش می دهند . استحكام دهی به وسیله رسوب دهی آسان اجزاء فلزی در حین عملیات پیر سازی صورت می گیرد . كه این رسوب سختی به واسطه عناصر آلیاژی همچون Co , Mo , Ti در مارتنزیت Fe-Ni با كربن بسیار كم 0.03% یا كمتر صورت می گیرد.
فولاد های ماریجینگ در شرایط آنیل محلول سازی تهیه می شوند پس دارای چقرمگی و نرمی نسبی ( 28 - 32 RC ) هستند . پس به سهولت شكل می گیرند و ماشین می شوند . خواص كامل آنها از طریق پیرسازی مارتنزیت بدست می آید .
خصوصیات فولادهای ماریجینگ :
1-استحكام نهایی و استحكام تسلیم بالا
2-تافنس ، داكتیلیتی و مقاومت به ضربه بالا در مقایسه با فولاد كوئنچ و تمپر شده با استحكام مشابه
3-استحكام خستگی زیاد
4-استحكام فشاری بالا
5-سختی و مقاومت به سایش كافی برای بعضی از ابزار های كاربردی
ب) خصوصیات عملیات حرارتی :
1-دمای مورد نیاز برای كوره پایین است
2-رسوب سختی و عملیات حرارتی پیری
3-انقباض یكنواخت و قابل پیش بینی در طول عملیات حرارتی
4-حداقل اعوجاج در طول عملیات حرارتی
5-سخت شدن بدون كوئنچ كردن
6-درصد پایین كربن ، كه جلوگیری از مشكل دكربوره شدن می كند.
ج) كارپذیری عالی
1-ماشینكاری آسان
2-مقاومت بالا در برابر انتشار ترك
3-شكل پذیری آسان در حالت سرد ، گرم و داغ
4-قابلیت جوشكاری خوب به خاطر درصد پایین كربن
5-مقاومت به خوردگی خوب كه نرخ خوردگی آن در حدود نصف فولادهای كوئنچ و تمپر شده است
این فاكتورها نشان می دهد كه فولادهای ماریجینگ در كاربردهایی مثل شفت ها و اجزایی كه تحت خستگی ضربه ای همچون كلاچ ها و چكش ها بهترین استفاده را دارد.
تولید و فرآوری فولادهای ماریجینگ
1-ذوب و ریخته گری
2-همگن سازی
3-آهنگری و نورد گرم
4-آنیل معمولی
5-پیر سازی
در فولادهای ماریجینگ رسیدن به استحكام و تافنس بالا مستلزم كنترل دقیق ریزساختار می باشد. از طرف دیگر چون آخال های موجود در زمینه این نوع فولادها تاثیر منفی شدیدی بر روی تافنس شكست دارند. باید تركیب ، ابعاد و توزیع آخال ها كنترل گردد. در این نوع فولادها به علت زیاد بودن عناصر آلیاژی جدایش شدید این عناصر در حین انجماد وجود دارد كه این جدایش تاثیر زیادی بر روی كاهش قابلیت آهنگری ، نورد گرم و .. خواهد داشت . پس لازم است كه شرایط انجمادی مناسب به صورت كنترل شده و سریع برای فولادها مهیا گردد. برای تهیه این فولادها از روش ذوب چند مرحله ای استفاده می شود. روش استاندارد برای تهیه فولادهای ماریجینگ استفاده از روش ذوب تحت خلاء دو مرحله ای می باشد كه در آن ابتدا به روش ذوب القائی تحت خلاء آلیاژ سازی صورت گرفته و سپس شمش تهیه شده به روش ذوب مجدد قوسی تحت خلاء الیاژ سازی صورت گرفته و سپس شمش تهیه شده به روش ذوب مجدد قوسی تحت خلا تصفیه می گردد.
عملیات حرارتی همگن كردن نیز به منظور افزایش قابلیت شكل پذیری شمش ها صورت می گیرد . همگن سازی فولاد ماریجینگ در 1250 c0 به مدت 2 الی 3 ساعت انجام می گیرد و به دنبال آن فولاد تحت كار مكانیكی گرم قرار گرفته و یا اینكه سریع سرد می گردد. این فولادها تحت انواع كارهای مكانیكی از قبیل آهنگری ، نورد ، اكستروژن گرم قرار می گیرند . بعد از مراحل فوق فولادهای ماریجینگ تحت عملیات آستنیته و سپس پیری قرار می گیرند.
عملیات حرارتی فولادهای ماریجینگ
این فولادها دو کاربرد بحرانی ومتمایز فولادهای کربن آبداده که استحکام بالا وتافنس وانعطاف پذیری خوب مورد نیاز است را دارا میباشد . فولادهای کربنی آبداده استحکامشان را از مکانیسمهای تغییر فاز وسخت گردانی بدست میآورند. ( مثل شکل گیری مارتنزیت و بینیت ) واین استحکام پس از رسوب گیری کاربیدها در طول مدت تمپر کردن بدست می آید. درمقایسه فولادهای ماریجینگ استحکامشان را از شکل گیری یک فولاد مارتنزیتی کم کربن انعطاف پذیرو سخت آهن ونیکل بدست می آورند که می توانند بوسیله رسوب گیری ترکیبات بین فلزی در طول مدت پیرسختی استحکام بیشتری داشته باشند. دوره ماریجینگ بر اساس پیرسختی ساختار مارتنزیتی وضع شده است.
متالورژی فیزیکی:
شکل گیری مارتنزیت :
بیشتر انواع فولادهای ماریجینگ دمای شروع مارتنزیت حدود 200 تا300 درجه سانتیگراد را دارند ودر دمای اتاق به طور کامل مارتنزیت هستند . نتیجه ساختار مارتنزیت یک فولاد نسبتا قوی و فوق العاده انعطاف پذیر میباشد .
عناصر آلیاژی دمای شروع مارتنزیت را بطور قابل ملاحظه ای تغییر می دهد اما تغییر مشخصه این استحاله به مقدار زیادی بستگی به سرعت سرد شدن دارد.
اغلب عناصرآلیاژی اضافه شده در فولادهای ماریجینگ (به استثناء کبالت ) درجه حرارت شروع مارتنزیت را کاهش می دهند.
یکی از دونوع ممکن مارتنزیت که در سیستم آلیاژی آهن- نیکل ممکن است شکل بگیرد بستگی به مقدار نیکل در ماده مورد سوال میباشد.در سرعتهای سرد کردن بالا در فولادهای شامل 5 تا 10 درصد نیکل ،و بیش از 10 درصد پایین آوردن سرعت سرد کردن، لازمه شکل گیری مارتنزیت در فولادها می انجامد وشکل گیری کامل ساختار مارتنزیتی را تعیین می کند.در فولادهای شامل 25 درصد نیکل ، مارتنزیت لایه ای وبالای 25 درصد مارتنزیت دو قلویی داریم .مطالعه برروی آلیاژهای مارجنیگ آهن – 7 درصد کبالت 5 درصد مولیبدن و4/. درصد تیتانیم در ( ماریجینگ 18 درصد نیکل 250 ) شامل مقادیر متفاوت نیکل نشان می دهد که یک ساختار مارتنزیتی لایه ای با مقادیر نیکل بیش از 23 درصد بدست می آید .
اگر چه مقادیر نیکل بیش از 23 درصد شکل گیری مارتنزیت دو قلویی را نتیجه داده است . معمولا یک ساختار مارتنزیتی لایه ای در فولادهای ماریجینگ ترجیح داده می شود زیرا در مدت پیر سازی این ساختار سخت تر از یک ساختار مارتنزیتی دو قلویی میباشد.
چگونگي انجام عملیات حرارتی فولادهای ماریجینگ:
اثرزمان و درجه حرارت تابکاری بر خواص پیرسازی: اطلاعات نشان میدهد که بیشترین استحکام در دمای تابکاری انحلالی 800 تا815 درجه بوجود می آید. استحکام وانعطاف پذیری پایین تر با درجه حرارت تابکاری از 760 تا 800 درجه ناشی از انحلال ناقل عناصر سخت کننده میباشد و کاهش استحکام مربوط به درجه حرارت تابکاری انحلالی بالای 815 درجه ناشی از درشتی ساختار دانه ها میباشد. سرعت سرد شدن بعد از تابکاری انحلالی از اهمیت کمتری برخورداراست چون اثر کمتری بر خواص زیر ساختاری ومکانیکی دارد.
اصلاح دانه ها بوسیله سیکل حرارتی : سیکل حرارتی فولادهای ماریجینگ بین درجه حرارت پایان مارتنزیت و دمای بسیار بالاتر از دمای تابکاری انحلال می تواند برای اصلاح ساختار دانه هایی که درشت هستند استفاده شود.این عمل استحاله برشی کم نفوذ ، مارتنزیت به آستنیت واز آستنیت به مارتنزیت نیروی محرکه برای تبلور مجدد در حین سیکلهای حرارتی تامین میکند.
پیر سختی:
کار سرد وپیر سازی :
نیتریده کردن :
پخت :
سند بلاست موثرترین روش برای حذف اکسید ناشی عملیات حرارتی است . فولادهای ماریجینگ را میتوان بوسیله مواد شیمیائی تمیز کننده مثل اسید شوئی در محلول اسید سولفوریک یا محلول اسید كلريدريك و اسيدنيتريك واسید هیدروفلوریک . اگر چه باید مراقب بود که بیش از حد اسید شوئی نشود
عملیات حرارتی كه روی این نوع فولادها انجام می گیرد عبارت است از عملیات محلول سازی در دمای بالاتر از 1000 C0 و نگهداری در این دما به مدت یك ساعت به منظور اینكه كاربیدهای آلیاژی كاملا حل شوند و ساختار 100% آستنیته تشكیل گردد.
به علت وجود عناصر آلیاژی منحنی TTT برای این فولاد به سمت راست حركت می كند. پس با سرد كردن این فولاد در هوا نیز ساختاری مارتنزیتی داریم كه مارتنزیت بدست آمده نرم بوده و قابلیت كار مكانیكی دارد. ساختار مارتنزیتی ایجاد شده را در 480-500 درجه تمپر می كنند. این تمپر كردن منجر به یك رسوب سختی قوی می گردد. رسوبات بین فلزی به واسطه مارتنزیت كه فوق اشباع از عناصر آلیاژی است صورت می گیرد . ساختار فولادهای ماریجینگ تجاری با حداكثر سختی می تواند شامل رسوبات كوهرنت از فاز نیمه پایدار Ni3Mo و Ni3Ti باشد. ذرات میان مرحله ای اینتر متالیك در فولاد ماریجینگ به شدت پراكنده هستند كه ناشی از رسوب آنها در نابجایی ها است . ساختار فولادهای ماریجینگ دارای دانسیته بالایی از نابجایی ها است . كه در چیدمان مجدد لتیس مارتنزیت ظاهر می شوند . در مارتنزیت دوقلویی نشده ، چگالی دیسلوكیشن ها 1011 - 1012 cm-2 است كه مشابه فلزات شدیدا كار سخت شده است.
این طور فرض می شود كه رسوب فازهای میان مرحله ای در هنگام تمپر كردن فولادهای ماریجینگ مقدم تر از جدایش اتم های اجزاء آلیاژی در دیسلوكیشن ها است . این اتمسفر شكل گرفته در دیسلوكیشن ها به عنوان مراكزی برای تمركز لایه های بعدی مارتنزیت كه با عناصر آلیاژی اشباع شده اند بكار می رود. در فولادهای ماریجینگ ساختار دیسلوكیشن ها كه در ضمن استحاله مارتنزیت شكل می گیرد . بسیار پایدار است . و در طی گرمادهی بعدی و در دمای بهینه تمپرینگ عملا بدون تغییر می ماند .
دانسیته بالای دیسلوكیشن ها در طی تمپرینگ ممكن است به علت فضای محسوس و پین شدن انها بوسیله تفرق رسوبات باشد . نگه داری زیاد در یك دمای تمپر بالا ( بیشتر یا 550 C0 ) می تواند رسوبات را درشت و فضای میان ذره ای را افزایش دهد . كه بر خلاف آن از دانسیته دیسلوكیشن ها كاسته می شود . با زمان نگه داری بالا رسوبات سمی كوهرنت اینتر متالیك با رسوبات درشت اینكوهرنت از فازهای پایداری چون Fe2Mo یا Fe2Ni جایگزین می شوند. در دمای افزایش یافته تمپرینگ ؛ فولادهای ماریجینگ ممكن است متحمل استحاله معكوس مارتنزیت شوند . به طور كلی می توان گفت كه خصوصیات استحكامی این نوع از فولاد ها بعد از یك نرمی به سوی ماكزیمم افزایش پیدا می كند . سختی موثر به علت شكل گیری جدایش در دیسلوكیشن ها و شكل گیری رسوبات كوهرنت از فازهای میانی همچون Ni3Ti و Ni3Mo است . دلیل نرم شدن را نیز می توان گفت كه به علت جایگزینی رسوبات پراكنده كه فضای میان ذره ای زیادی دارند و استحاله معكوس مارتنزیت است.
استفاده از کامپوزیتها به جای فولاد
تاکنون تکنیکهایی جهت جلوگیری از خوردگی فولاد در بتنآرمه توسعه داده شده و به کار رفته است که در این ارتباط میتوان به پوشش میلگردها توسط اپوکسی، تزریق پلیمر به سطح بتن و یا حفاظت کاتدیک اشاره نمود. با این وجود هر یک از این روشها تا حدودی و فقط در بعضی از زمینهها موفق بودهاند. به همین جهت به منظور حذف کامل خوردگی میلگردها، توجه محققین و متخصصین بتنآرمه به حذف کامل فولاد و جایگزینی آن با مواد مقاوم در مقابل خوردگی معطوف گردیده است. در همین راستا کامپوزیتهای FRP )پلاستیکهای مسلح به الیاف) از آنجا که به شدت در محیطهای نمکی و قلیایی در مقابل خوردگی مقاوم هستند، موضوع تحقیقات گستردهای به عنوان یک جانشین مناسب برای فولاد در بتنآرمه، به خصوص در سازههای ساحلی و دریایی گردیدهاند.
لازم به ذکر است که اگر چه مزیت اصلی میلگردهای از جنس FRP مقاومت آنها در مقابل خوردگی است، با این وجود خواص دیگر کامپوزیتهای FRP نظیر مقاومت کششی بسیار زیاد (تا ۷ برابر فولاد)، مدول الاستیسیتة قابل قبول، وزن کم ، مقاومت خوب در مقابل خستگی و خزش، عایق بودن در مقابل امواج مغناطیسی و چسبندگی خوب با بتن، مجموعهای از خواص مطلوب را تشکیل میدهد که به جذابیت کاربرد FRP در بتنآرمه افزودهاند. اگر چه بعضی از مشکلات نظیر مشکلات مربوط به خم کردن آنها و نیز رفتار کاملاً خطی آنها تا نقطة شکست، مشکلاتی از نظر کاربرد آنها فراهم نمودهاند که امروزه موضوع تحقیقات گستردهای به عنوان یک جانشین مناسب برای فولاد در بتنآرمه، به خصوص در سازههای ساحلی و دریایی گردیدهاند.
با توجه به آنچه که ذکر شد ، بسیار به جاست که در ارتباط با کاربرد کامپوزیتهای FRP در بتن سازههای ساحلی و دریایی مناطق جنوبی ایران و به خصوص منطقة خلیجفارس، تحقیقات گستردهای صورت پذیرد. در همین راستا مناسب است که تحقیقات مناسبی بر انواع کامپوزیتهای FRP(AFRP, CFRP, GFRP) و میزان مناسب بودن آنها برای سازههای دریایی که در منطقة خلیجفارس احداث شده است، صورت پذیرد. این تحقیقات شامل پژوهشهای گستردة تئوریک بر رفتار سازههای بتنآرمة متداول در مناطق دریایی (به شرط آنکه با کامپوزیتهای FRP مسلح شده باشند) خواهد بود. در همین ارتباط لازم است کارهای تجربی مناسبی نیز بر رفتار خمشی، کششی و فشاری قطعات بتنآرمة مسلح به کامپوزیتهای FRP صورت پذیرد.
لازم به ذکر است که چنین تحقیقاتی در ۱۰ سال اخیر در دنیا صورت گرفته که نتیجة این تحقیقات منجمله آئیننامة ACI-۴۴۰ است که در چند سال اخیر انتشار یافته است. با این وجود کامپوزیتهای FRP در ایران کماکان ناشناخته باقی مانده است و به خصوص کاربرد آنها در بتنآرمه در سازههای ساحلی و دریایی کاملاً دور از چشم متخصصین و مهندسین ایرانی بوده است. تحقیقاتی که در این ارتباط صورت خواهد گرفت، میتواند منجر به تهیة دستورالعمل و یا حتی آئیننامهای جهت کاربرد FRP در بتنآرمه به عنوان یک جسم مقاوم در مقابل خوردگی در سازههای بندری و دریایی ایران گردد. این حرکت میتواند فرهنگ کاربرد این مادة جدید در بتنآرمة ایران را بنیان گذارد و از طرفی منجر به صرفهجویی میلیاردها ریال سرمایهای شود که متأسفانه همه ساله در سازههای بتنآرمة احداث شده در مناطق جنوبی ایران (به خصوص در مناطق بندری و دریایی)، به جهت خوردگی میلگردها و تخریب و انهدام سازة بتنی، بههدر میرود.
مآخذ :
http://www.worldsteel.org
http://www.uneptie.org/
http://www.rahyarbamin.com
http://www.netiran.com/
http://www.key-to-steel.com/
http://www.bamehrgan.com/
http://www.sanatekhodro.com/
http://steel-institute.ir/
http://www.infosanat.com
http://metallurg.mihanblog.com
آفتاب
دانشنامهٔ رشد
مراجع:
گلعذار، محمدعلی - عملیات حرارتی فولادها - انتشارات دانشگاه صنعتی اصفهان- ۱۳۸۳
• M. S. Andrade, O. A. Gomes, J. M. C. Vilela, A. T. L. Serrano and J. M. D. de Moraes, Formability Evaluation of Two Austenitic Stainless Steels, Journal of the Brazilian Society of Mechanical Science & Engineering, 24, 47-50 2004.
• A. Westgren and G. Phragmen, X-ray studies on the crystal structure of steel, Journal of Iron Institute, 105, 241-262, 1922.
• H. K. D. H. Bhadeshia, Bainite in Steels, 2nd Edition, Institute of Materials, Woodhead Pub Ltd, 2001, ISBN 1861251122
• Zenji NISHIYAMA, Atsuo KORE'EDA and Ken'ichi SHIMIZU, Morphology of the Pearlite Examined by the Direct Observation Method of Electron Microscopy, Journal of Electron Microscopy, 7, 41-47, 1959.
• V. B. Spiridonov, Yu. A. Skakov and V. N. Iordanskii, Microstructure of martensite in chromium-nickel steel, Metal Science and Heat Treatment, 6, 630-632, 1964. doi:10.1007/BF00648705
• . The family of steels for plastic moulding- LUCCHINI SIDERMER -MECCANICA- June 2005
• . Tool steels for the plastics industry-Edelstahlwerke Buderus AG-2007
• . Plastic mould steels-FLETCHER EASYSTEEL-2007
• . Steels for plastic moulding-EDELSTAHL WITTEN- KREFELD GMBH-2007
• . Plastic mould steels- BOHLER-11.2003
• . Plastic mould steels- ESCHMANN STAHL-2007
• . Table of plastic steels properties- ASSAB-2008
/خ