تولید فوتون‌های منفردِ با کیفیت بالا برای محاسبات کوانتومی

محققان MIT یک راه برای تولید فوتون های منفرد بیشتر، در دمای اتاق، برای انتقال اطلاعات کوانتومی طراحی کرده اند. آنها می گویند، این طراحی، برای توسعه کامپیوترهای کوانتومی عملی امید بخش است.
شنبه، 28 ارديبهشت 1398
تخمین زمان مطالعه:
پدیدآورنده: حمید وثیق زاده انصاری
موارد بیشتر برای شما
تولید فوتون‌های منفردِ با کیفیت بالا برای محاسبات کوانتومی
محققان MIT (مؤسسه فناوری ماساچوست) یک فرستنده ی تک فوتونی جدید ایجاد کرده اند که در دمای اتاق، تعدادی بیشتر از تعداد فوتون های با کیفیت بالایی که می توانند برای رایانه های کوانتومی عملی، ارتباطات کوانتومی و سایر دستگاه های کوانتومی مفید باشند، را تولید می کنند. اعتبار: موسسه فناوری ماساچوست
 
محققان MIT یک راه برای تولید فوتون های منفرد بیشتر، در دمای اتاق، برای انتقال اطلاعات کوانتومی طراحی کرده اند. آنها می گویند، این طراحی، برای توسعه کامپیوترهای کوانتومی عملی امید بخش است.
 
فرستنده های کوانتومی فوتون هایی را تولید می کنند که در هر نوبت یکی از آنها می تواند آشکار سازی شود. رایانه ها و دستگاه های کوانتومی مصرفی می توانند به طور بالقوه از خواص ویژه ای از این فوتون ها به عنوان بیت های کوانتومی (کیوبیت ها) برای اجرای محاسبات استفاده کنند. در حالی که کامپیوترهای کلاسیک اطلاعات را در بیت های یا 0 یا 1 پردازش و ذخیره می کنند، کیوبیت ها می توانند به طور همزمان 0 و 1 باشند. این به این معناست که کامپیوترهای کوانتومی به طور بالقوه می توانند مشکلاتی را حل کنند که برای رایانه های کلاسیک رام نشدنی هستند.
 
چالش کلیدی، با این حال، تولید فوتون های منفرد با خواص کوانتومی مشابه - شناخته شده تحت عنوان فوتون های غیر قابل تشخیص - است. برای بهبود غیر قابل تشخیص بودن، فرستنده ها نور را از میان یک حفره نوری که در آن فوتون ها به عقب و جلو می جهند، هدایت می کنند، و این فرآیندی است که کمک می کند که خواص آنها با حفره مطابقت داده شود. به طور کلی هر چه فوتون ها طولانی‌تر در حفره بمانند، بیشتر مطابقت حاصل می کنند.
 
اما بالانسی هم وجود دارد. در حفره های بزرگ، فرستنده های کوانتومی خود به خود تولید فوتون ها را انجام می دهند و تنها کسر کوچکی از فوتون ها در حفره می ماند و این روند را ناکارآمد می سازد. حفره های کوچکتر درصد بیشتری از فوتون ها را استخراج می کنند، اما فوتون ها با کیفیت پایین یا "قابل تشخیص" هستند.
 
در یک مقاله منتشر شده در Physical Review Letters، محققان یک حفره را به دو قسمت تقسیم می کنند که برای هر کدام یک وظیفه تعیین می شود. حفره کوچکتر، استخراج کارآمد فوتون ها را مدیریت می کند، در حالی که یک حفره بزرگ متصل، آنها را کمی طولانی تر ذخیره می کند تا غیر قابل تشخیص بودن را تقویت کند.
 
در مقایسه با یک حفره منفرد، حفره های جفت شده محققان فوتون هایی تولید کرد با حدود 95 درصد غیر قابل تشخیص بودن، در مقایسه با 80 درصد غیر قابل تشخیص بودن، با سه برابر کارایی بالاتر.
 
اولین نویسنده، هیونگ رَک "چاک" چوی، دانشجوی کارشناسی ارشد آزمایشگاه تحقیقاتی الکترونیک MIT می گوید: "به طور خلاصه، دو بهتر از یک است." "آنچه که ما متوجه شدیم این است که در این معماری می توان نقش دو حفره را جدا کرد: حفره اول صرفا بر روی جمع آوری فوتون ها برای کارایی بالا تمرکز می کند، در حالی که دومی بر روی غیر قابل تشخیص بودن در یک کانال تمرکز می کند. در حالی که کامپیوترهای کلاسیک اطلاعات را در بیت های یا 0 یا 1 پردازش و ذخیره می کنند، کیوبیت ها می توانند به طور همزمان 0 و 1 باشند. یک حفره که هر دو نقش را بازی کند نمی تواند به هر دو استاندارد دست یابد، اما دو حفره به طور همزمان به هر دو دست می یابند."
 
فرستنده های کوانتومی نسبتا جدید، که به عنوان "فرستنده های تک فوتون" شناخته می شوند، توسط نقایص موادی که اگر نقص نداشتند خالص بودند، مانند الماس ها، نانولوله های کربنی تقویت شده یا نقاط کوانتومی، ایجاد می شوند. نور تولید شده از این "اتم های مصنوعی" توسط یک حفره نوری کوچک در کریستال فوتونی – نانو ساختاری که به عنوان یک آینه عمل می کند - گرفته می شود. بعضی از فوتون ها فرار می کنند، اما دیگران در اطراف حفره پس می جهند، که این فوتون ها را مجبور می سازد که عمدتاً خواص کوانتومی یکسانی داشته باشند، در حالی که خواص فرکانسی مختلف دارند. هنگامی که آنها برای مطابقت داشتن اندازه گیری می شوند، از حفره از طریق یک موجبر خارج می شوند.
 
اما فرستنده های تک فوتون همچنین تُن های نویز محیطی مانند ارتعاشات شبکه یا نوسان بار الکتریکی را تجربه می کنند که طول موج یا فاز مختلفی را تولید می کنند. فوتون هایی با خواص متفاوت نمی توانند "تداخل" داشته باشند، به طوری که امواج آنها با هم همپوشانی داشته باشند و منجر به الگوهای تداخلی شوند. این الگوی تداخلی اساساً همان چیزی است که یک کامپیوتر کوانتومی می بیند و اندازه گیری می کند تا کارهای محاسباتی را انجام دهد.
 
غیر قابل تشخیص بودن فوتون معیاری از پتانسیل فوتون برای تداخل است. به این ترتیب، یک استاندارد ارزشمند است که استفاده آنها را برای محاسبات کوانتومی شبیه سازی می کند. چوی می گوید: "حتی قبل از تداخل فوتون، با قابلیت غیر قابل تشخیص بودن، می توانیم توانایی فوتون ها را برای تداخل مشخص کنیم." "اگر ما این توانایی را بدانیم، می توانیم در صورت استفاده از فناوری های کوانتومی مانند رایانه های کوانتومی، ارتباطات، یا تکرار کننده ها، آنچه را که دارد اتفاق می افتد محاسبه کنیم."
در سیستم محققان، یک حفره کوچک متصل به یک فرستنده باقی می ماند، که در مطالعات آنها یک نقص اپتیکی در یک الماس بود، به نام "مرکز سیلیکون خالی"، که یک اتم سیلیکون جایگزین دو اتم کربن در یک شبکه الماس است. نور تولید شده توسط این نقص در حفره اول جمع آوری می شود. با توجه به ساختار تمرکز نور آن، فوتون ها با نرخ بسیار بالا استخراج می شوند. سپس، نانو حفره فوتونها را به یک حفره بزرگتر دوم، کانال می زند. در آنجا، فوتونها برای مدت زمان مشخصی به عقب و جلو می روند. الگوی تداخلی اساساً همان چیزی است که یک کامپیوتر کوانتومی می بیند و اندازه گیری می کند تا کارهای محاسباتی را انجام دهد. وقتی که به یک غیر قابل تشخیص بودن بالا می رسند، فوتونها از میان یک آینه جزئی تشکیل شده توسط سوراخهای متصل کننده حفره به یک موجبر خارج می شوند.
 
چوی می گوید مهم این است که هیچ حفره ای لازم نیست الزامات طراحی شدیدی را برای کارایی یا قابلیت غیر قابل تشخیص بودن، آن چنان که برای حفره های مرسوم به نام فاکتور کیفیت (فاکتور Q) لازم است، اجابت کند. هرچه فاکتور Q بالاتر باشد، افت انرژی در حفره های نوری پایین تر است. اما حفره هایی با فاکتور Q بالا از نظر تکنولوژیکی چالش برانگیز هستند.
 

منبع: مؤسسه فناوری ماساچوست، راب ماتسون


مقالات مرتبط
ارسال نظر
با تشکر، نظر شما پس از بررسی و تایید در سایت قرار خواهد گرفت.
متاسفانه در برقراری ارتباط خطایی رخ داده. لطفاً دوباره تلاش کنید.
مقالات مرتبط
موارد بیشتر برای شما
بررسی مرقع و قطاع در خوشنویسی
بررسی مرقع و قطاع در خوشنویسی
خیابانی: آقای بیرانوند! من بخواهم از نام بردن تو معروف بشوم؟ خاک بر سر من!
play_arrow
خیابانی: آقای بیرانوند! من بخواهم از نام بردن تو معروف بشوم؟ خاک بر سر من!
توضیحات وزیر رفاه در خصوص عدم پرداخت یارانه
play_arrow
توضیحات وزیر رفاه در خصوص عدم پرداخت یارانه
حمله پهپادی حزب‌ الله به ساختمانی در نهاریا
play_arrow
حمله پهپادی حزب‌ الله به ساختمانی در نهاریا
مراسم تشییع شهید امنیت وحید اکبریان در گرگان
play_arrow
مراسم تشییع شهید امنیت وحید اکبریان در گرگان
به رگبار بستن اتوبوس توسط اشرار در محور زاهدان به چابهار
play_arrow
به رگبار بستن اتوبوس توسط اشرار در محور زاهدان به چابهار
دبیرکل حزب‌الله: هزینۀ حمله به بیروت هدف قراردادن تل‌آویو است
play_arrow
دبیرکل حزب‌الله: هزینۀ حمله به بیروت هدف قراردادن تل‌آویو است
گروسی: فردو جای خطرناکی نیست
play_arrow
گروسی: فردو جای خطرناکی نیست
گروسی: گفتگوها با ایران بسیار سازنده بود و باید ادامه پیدا کند
play_arrow
گروسی: گفتگوها با ایران بسیار سازنده بود و باید ادامه پیدا کند
گروسی: در پارچین و طالقان سایت‌های هسته‌ای نیست
play_arrow
گروسی: در پارچین و طالقان سایت‌های هسته‌ای نیست
گروسی: ایران توقف افزایش ذخایر ۶۰ درصد را پذیرفته است
play_arrow
گروسی: ایران توقف افزایش ذخایر ۶۰ درصد را پذیرفته است
سورپرایز سردار آزمون برای تولد امیر قلعه‌نویی
play_arrow
سورپرایز سردار آزمون برای تولد امیر قلعه‌نویی
رهبر انقلاب: حوزه‌ علمیه باید در مورد نحوه حکمرانی و پدیده‌های جدید نظر بدهد
play_arrow
رهبر انقلاب: حوزه‌ علمیه باید در مورد نحوه حکمرانی و پدیده‌های جدید نظر بدهد
حملات خمپاره‌ای سرایاالقدس علیه مواضع دشمن در جبالیا
play_arrow
حملات خمپاره‌ای سرایاالقدس علیه مواضع دشمن در جبالیا
کنایه علی لاریجانی به حملات تهدیدآمیز صهیونیست‌ها
play_arrow
کنایه علی لاریجانی به حملات تهدیدآمیز صهیونیست‌ها