نقش نسل جدید لوله ها در بهینه سازی سیستم های گرمایشی و سرمایشی ساختمان ها
نویسنده: دکتر علیرضا مردوخ پور (1)
Role of new pipes generation in optimizing building HVAC systems
در این مقاله به نقد و بررسی لوله های (PEX) که بهره گیری از آن ها در ایران هم مورد توجه قرار گرفته است پرداخته می شود تا مزایای آن ها در صنعت ساختمان که منجر به بهینه سازی مصرف انرژی در تأسیسات حرارتی و برودتی می شود معرفی گردند.
کلید واژه ها: بهینه سازی (optimize)، سیستم های حرارتی (thermal systems) لوله های پلیمری (polymer pipes)، پلی اتیلن شبکه شده (cross linking polymer)
توزیع و انتقال آب در ساختمان ها، برای مدت های زیادی رواج داشته است. در طی زمان، نقایص و ایراداتی در لوله های فلزی آب رسانی در ساختمان ها، آشکار گردیده است. نقایصی نظیر خوردگی، زنگ زدگی، رسوب گرفتگی، پوسیدگی و عدم مقاومت در برابر حرارت های بالا و فشار مداوم، سبب شده که طراحان تلاش نمایند با ابداع روش ها و مصالح جدید نظیر استفاده از آلیاژهای سبک به فکر حل این مشکلات بیفتند. در دهه ی 1990 میلادی سیستم جدیدی ارئه گشت که نتیجه ی تلاش محققانی بود که از سال 1970 میلادی در مورد پلیمرها به تحقیق پرداخته بودند. این تلاش ها منجر به ابداع سیستمی بر مبنای تولید لوله های پلیمری گشت که امروزه در اغلب کشورهای پیشرفته ی صنعتی جایگزین لوله های فلزی گشته اند.
اگرچه خانواده های لوله های پلیمری مانند پلی اتیلن (PE)، پلی پروپیلن (PP) و پی وی سی (PVC) فاقد ایرادات لوله های فلزی هستند، ولی در ابتدای تحقیقات مشخص گردید که این لوله ها دارای نقایص و ضعف هایی مانند محدودیت در انتقال حرارت بالا و عدم تحمل فشار در دمای بالا می باشند. جهت رفع نواقص مورد اشاره و دستیابی به محصولی که دارای مزایای لوله های فلزی و پلیمری و فاقد ایرادات آن ها باشد، تلفیق مواد پلیمری و فلزی مورد بررسی قرار گرفت، به گونه ای که بر مبنای تلفیق این مواد، در سیستم های لوله کشی و آب رسانی در تأسیسات حرارتی، در طی دو دهه ی اخیر، تحولات نوینی پدید آمد. لوله های مسی و گالوانیزه که اولین نسل لوله ها در تأسیسات حرارتی و برودتی بودند به تدریج جای خود را به نسل های جدید لوله های پلیمری سپردند و معایب لوله های فلزی مانند خوردگی، پورسیدگی، بروز فعل و انفعالات شیمیایی در فلز و تشکیل لایه ی رسوب داخل لوله و ایجاد افت فشار بالا در سیستم برطرف گردید و گامی بلند در بهینه سازی اقتصادی و کاهش مصرف انرژی در ساختمان ها برداشته شد.
به طور کلی پلی اتیلن شبکه شده از مسیر تحول 30 ساله ای به دست آمد. از آن جا که پلی اتیلن معمولی دارای ویژگی هایی نظیر عایق الکتریکی بودن، خاصیت ورقه شدن و مقاومت شیمیایی بالا را دارا می باشد [4]، گزینه ی مناسبی برای استفاده در صنعت لوله کشی ساختمان بود، ولی نقطه ی ضعف پلی اتیلن معمولی آن است که این ماده در برابر حلال ها به سرعت تغییر شکل می دهد و ممکن است در آب ناخالص در آن ترک به وجود آید. از این رو پلی اتیلن معمولی در طولانی مدت در آب گرم قابل استفاده نیست و کاربرد آن در شبکه ی تأسیسات حرارتی ساختمان مورد سوال قرار می گیرد. برای برطرف نمودن این نقص، پلی اتییلن را به اصطلاح شبکه ای می نمایند تا محصول PEX به دست آید. با شبکه ای شدن پلی اتیلن، مقاومت آن در برابر حلال ها افزایش می یابد، ضمن آن که برخی خواص فیزیکی و مکانیکی آن در دمای بالا هم بهبود می یابد. [3]
لوله های پلیمری مرکب (PEX) دارای ویژگی ها و ساختاری شبکه ای به شرح زیر می باشند:
1- لایه ی آلومینیوم: اگرچه لوله های پلی اتییلن شبکه ای شده در برابر حلال ها پایدارند، ولی دارای دو محدودیت مهم می باشند:
الف) ضریب انبساط حرارتی بالا: به طور کلی ضریب انبساط حرارتی مواد پلیمری نسبت به فلزات بالاتر است. هنگامی که آب گرم در لوله های پلیمری جریان می یابد ابتدا طول لوله ها افزایش می یابد که در صورت بسته بودن شبکه ی لوله کشی، تنش های حرارتی به وجود می آیند.
ب) نفوذ اکسیژن: نفوذ اکسیژن از طریق لایه های پلیمری در سیستم های رایج حرارتی، تخریب دیگر اجزای سیستم را به همراه دارد. برای رفع دو ایراد مشروحه، از لایه ای آلومینیوم بهره می گیرند. [3] مشخصات آلومینیومن مصرفی بر طبق استانداردASTM ارائه می شود [1]، ولی می توان به طور کلی ضخامت آن را بین 0/2 تا 0/3 میلی متر و مقاومت کششی آن را حداقل 100 مگاپاسکال انتخاب نمود. [5]
2- چسب: بین لایه ی آلومینیوم و لایه های خارجی پلی اتیلن شبکه شده، از چسب ویژه ای استفاده می گردد. چسب مورد استفاده باید دارای دو ویژگی مهم باشد:
الف) استحکام بالا به هنگام چسبیدن به آلومینیوم و پلی اتیلن؛ و
ب) مقاومت حرارتی بالا تا دمای 110 درجه ی سانتی گراد به مدت طولانی.
1- عمر بالای بهره برداری: بر طبق استاندارد ASTM و نیز استاندارد DIN طول عمر لوله های PEX در شرایط استاندارد بهره بردرای حدود 50 سال برآوردمی گردد.
2- تحمل فشار و دمای بالا و نیز دمای زیر صفر درجه ی سانتی گراد: با مراجعه به استاندارد ASTM-F128، لوله های PEX می توانند در دمای 95 درجه ی سانتی گراد با فشار 10 اتمسفر به مدت 50 سال شرایط بهره برداری را فراهم نمایند. همچنین لوله های PEX، قابلیت تحمل دماهای زیر صفر درجه تا حد 40 درجه ی سانتی گراد زیر صفر را دارا می باشند، لذا می توان از این لوله ها در مولدهای سرمایشی هم بهره برد.
3- عدم نفوذ اکسیژن: لوله های PEX به دلیل وجود آلومینیوم، در مقابل نفوذ اکسیژن محفوظ هستند و لذا هیچ گونه خوردگی متوجه اتصالات لوله کشی و مخازن نمی گرددد.
5- مقاومت در برابر رسوبات: جدار داخلی لوله های مرکب PEX، نسبت به جدار داخلی لوله های فلزی صیقلی تر است که این امر امکان رسوب گیری توسط لوله را منتفی می نماید.
6- انتخاب لوله با قطر کم تر در طراحی: به دلیل عدم رسوب گذاری، افت فشار داخل لوله ها بسیار کم است و لذا هنگام طرح، انتخاب لوله هایی با قطر کم تر فراهم می آید.
7- انعطاف پذیری: با توجه به آن که فلزات قابلیت شکل پذیری و پلیمرها قابلیت انعطاف پذیری بالایی دارند، انتظار می رود که لوله های (PEX) که حاوی هر دو مولد مذکورند، هر دو ویژگی را داشته باشند. لوله های (PEX) در مقابل ضربه و تنش های وارده مقاومت بالاتری به دلیل وجود آلومینیوم در مرکز لایه دارند، ضمن آن که به دلیل بدنه ی پلیمری، انعطاف پذیری بالایی در برابر تغییرات فشار و درجه حرارت دارند.
8- کاهش تعداد اتصالات: به دلیل انعطاف پذیر بودن لوله های مرکب (PEX)، امکان تهیه ی کلاف طولی از آن ها فراهم می آید و لذا می توان طول لوله ها را بلندتر طراحی نمود که در نتیجه امکان کاهش تعداد اتصالات فراهم می آید. ذکر این نکته لازم است که در صورت کاهش تعداد اتصالات در طرح، می توان لوله کشی را با هزینه ی کم تری انجام داد و هزینه ی طراحی و اجرا را پایین آورد.
[1] ASTM Standards: "Specification for aluminum and aluminum alloy round welded tubes". Vol. 02.02. B313M. (1995).
[2] ASTM Standards: "Specification for polyethylene plastics molding and extrusion materials". Vol. 08.01. D 1248. (1995)
[3] British standard: BS 6920. Subsection. 2.2.2. (2020)
[4] European standard: EN 579. (2003)
[5] U.S. department of energy. (2004)
دانش نما شماره پياپي 166-165
خلاصه ی مقاله
در این مقاله به نقد و بررسی لوله های (PEX) که بهره گیری از آن ها در ایران هم مورد توجه قرار گرفته است پرداخته می شود تا مزایای آن ها در صنعت ساختمان که منجر به بهینه سازی مصرف انرژی در تأسیسات حرارتی و برودتی می شود معرفی گردند.
چکیده
کلید واژه ها: بهینه سازی (optimize)، سیستم های حرارتی (thermal systems) لوله های پلیمری (polymer pipes)، پلی اتیلن شبکه شده (cross linking polymer)
مقدمه
توزیع و انتقال آب در ساختمان ها، برای مدت های زیادی رواج داشته است. در طی زمان، نقایص و ایراداتی در لوله های فلزی آب رسانی در ساختمان ها، آشکار گردیده است. نقایصی نظیر خوردگی، زنگ زدگی، رسوب گرفتگی، پوسیدگی و عدم مقاومت در برابر حرارت های بالا و فشار مداوم، سبب شده که طراحان تلاش نمایند با ابداع روش ها و مصالح جدید نظیر استفاده از آلیاژهای سبک به فکر حل این مشکلات بیفتند. در دهه ی 1990 میلادی سیستم جدیدی ارئه گشت که نتیجه ی تلاش محققانی بود که از سال 1970 میلادی در مورد پلیمرها به تحقیق پرداخته بودند. این تلاش ها منجر به ابداع سیستمی بر مبنای تولید لوله های پلیمری گشت که امروزه در اغلب کشورهای پیشرفته ی صنعتی جایگزین لوله های فلزی گشته اند.
اگرچه خانواده های لوله های پلیمری مانند پلی اتیلن (PE)، پلی پروپیلن (PP) و پی وی سی (PVC) فاقد ایرادات لوله های فلزی هستند، ولی در ابتدای تحقیقات مشخص گردید که این لوله ها دارای نقایص و ضعف هایی مانند محدودیت در انتقال حرارت بالا و عدم تحمل فشار در دمای بالا می باشند. جهت رفع نواقص مورد اشاره و دستیابی به محصولی که دارای مزایای لوله های فلزی و پلیمری و فاقد ایرادات آن ها باشد، تلفیق مواد پلیمری و فلزی مورد بررسی قرار گرفت، به گونه ای که بر مبنای تلفیق این مواد، در سیستم های لوله کشی و آب رسانی در تأسیسات حرارتی، در طی دو دهه ی اخیر، تحولات نوینی پدید آمد. لوله های مسی و گالوانیزه که اولین نسل لوله ها در تأسیسات حرارتی و برودتی بودند به تدریج جای خود را به نسل های جدید لوله های پلیمری سپردند و معایب لوله های فلزی مانند خوردگی، پورسیدگی، بروز فعل و انفعالات شیمیایی در فلز و تشکیل لایه ی رسوب داخل لوله و ایجاد افت فشار بالا در سیستم برطرف گردید و گامی بلند در بهینه سازی اقتصادی و کاهش مصرف انرژی در ساختمان ها برداشته شد.
لوله های پلیمری
به طور کلی پلی اتیلن شبکه شده از مسیر تحول 30 ساله ای به دست آمد. از آن جا که پلی اتیلن معمولی دارای ویژگی هایی نظیر عایق الکتریکی بودن، خاصیت ورقه شدن و مقاومت شیمیایی بالا را دارا می باشد [4]، گزینه ی مناسبی برای استفاده در صنعت لوله کشی ساختمان بود، ولی نقطه ی ضعف پلی اتیلن معمولی آن است که این ماده در برابر حلال ها به سرعت تغییر شکل می دهد و ممکن است در آب ناخالص در آن ترک به وجود آید. از این رو پلی اتیلن معمولی در طولانی مدت در آب گرم قابل استفاده نیست و کاربرد آن در شبکه ی تأسیسات حرارتی ساختمان مورد سوال قرار می گیرد. برای برطرف نمودن این نقص، پلی اتییلن را به اصطلاح شبکه ای می نمایند تا محصول PEX به دست آید. با شبکه ای شدن پلی اتیلن، مقاومت آن در برابر حلال ها افزایش می یابد، ضمن آن که برخی خواص فیزیکی و مکانیکی آن در دمای بالا هم بهبود می یابد. [3]
لوله های پلیمری مرکب (PEX) دارای ویژگی ها و ساختاری شبکه ای به شرح زیر می باشند:
1- لایه ی آلومینیوم: اگرچه لوله های پلی اتییلن شبکه ای شده در برابر حلال ها پایدارند، ولی دارای دو محدودیت مهم می باشند:
الف) ضریب انبساط حرارتی بالا: به طور کلی ضریب انبساط حرارتی مواد پلیمری نسبت به فلزات بالاتر است. هنگامی که آب گرم در لوله های پلیمری جریان می یابد ابتدا طول لوله ها افزایش می یابد که در صورت بسته بودن شبکه ی لوله کشی، تنش های حرارتی به وجود می آیند.
ب) نفوذ اکسیژن: نفوذ اکسیژن از طریق لایه های پلیمری در سیستم های رایج حرارتی، تخریب دیگر اجزای سیستم را به همراه دارد. برای رفع دو ایراد مشروحه، از لایه ای آلومینیوم بهره می گیرند. [3] مشخصات آلومینیومن مصرفی بر طبق استانداردASTM ارائه می شود [1]، ولی می توان به طور کلی ضخامت آن را بین 0/2 تا 0/3 میلی متر و مقاومت کششی آن را حداقل 100 مگاپاسکال انتخاب نمود. [5]
2- چسب: بین لایه ی آلومینیوم و لایه های خارجی پلی اتیلن شبکه شده، از چسب ویژه ای استفاده می گردد. چسب مورد استفاده باید دارای دو ویژگی مهم باشد:
الف) استحکام بالا به هنگام چسبیدن به آلومینیوم و پلی اتیلن؛ و
ب) مقاومت حرارتی بالا تا دمای 110 درجه ی سانتی گراد به مدت طولانی.
ویژگی ها و مزایای لوله های مرکب (PEX):
1- عمر بالای بهره برداری: بر طبق استاندارد ASTM و نیز استاندارد DIN طول عمر لوله های PEX در شرایط استاندارد بهره بردرای حدود 50 سال برآوردمی گردد.
2- تحمل فشار و دمای بالا و نیز دمای زیر صفر درجه ی سانتی گراد: با مراجعه به استاندارد ASTM-F128، لوله های PEX می توانند در دمای 95 درجه ی سانتی گراد با فشار 10 اتمسفر به مدت 50 سال شرایط بهره برداری را فراهم نمایند. همچنین لوله های PEX، قابلیت تحمل دماهای زیر صفر درجه تا حد 40 درجه ی سانتی گراد زیر صفر را دارا می باشند، لذا می توان از این لوله ها در مولدهای سرمایشی هم بهره برد.
3- عدم نفوذ اکسیژن: لوله های PEX به دلیل وجود آلومینیوم، در مقابل نفوذ اکسیژن محفوظ هستند و لذا هیچ گونه خوردگی متوجه اتصالات لوله کشی و مخازن نمی گرددد.
شکل 1: مقطع عرضي لوله هاي پليمري مرکب (PEX)
5- مقاومت در برابر رسوبات: جدار داخلی لوله های مرکب PEX، نسبت به جدار داخلی لوله های فلزی صیقلی تر است که این امر امکان رسوب گیری توسط لوله را منتفی می نماید.
6- انتخاب لوله با قطر کم تر در طراحی: به دلیل عدم رسوب گذاری، افت فشار داخل لوله ها بسیار کم است و لذا هنگام طرح، انتخاب لوله هایی با قطر کم تر فراهم می آید.
7- انعطاف پذیری: با توجه به آن که فلزات قابلیت شکل پذیری و پلیمرها قابلیت انعطاف پذیری بالایی دارند، انتظار می رود که لوله های (PEX) که حاوی هر دو مولد مذکورند، هر دو ویژگی را داشته باشند. لوله های (PEX) در مقابل ضربه و تنش های وارده مقاومت بالاتری به دلیل وجود آلومینیوم در مرکز لایه دارند، ضمن آن که به دلیل بدنه ی پلیمری، انعطاف پذیری بالایی در برابر تغییرات فشار و درجه حرارت دارند.
8- کاهش تعداد اتصالات: به دلیل انعطاف پذیر بودن لوله های مرکب (PEX)، امکان تهیه ی کلاف طولی از آن ها فراهم می آید و لذا می توان طول لوله ها را بلندتر طراحی نمود که در نتیجه امکان کاهش تعداد اتصالات فراهم می آید. ذکر این نکته لازم است که در صورت کاهش تعداد اتصالات در طرح، می توان لوله کشی را با هزینه ی کم تری انجام داد و هزینه ی طراحی و اجرا را پایین آورد.
نتیجه
پينوشتها:
1- استادیار گروه عمران، دانشگاه آزاد اسلامی واحد لاهیجان، عضو پایه ی یک سازمان نظام مهندسی ساختمان استان تهران، عضو انجمن راه و ساختمان ایران، Email: alireza.mordokhpour@yahoo.com
[1] ASTM Standards: "Specification for aluminum and aluminum alloy round welded tubes". Vol. 02.02. B313M. (1995).
[2] ASTM Standards: "Specification for polyethylene plastics molding and extrusion materials". Vol. 08.01. D 1248. (1995)
[3] British standard: BS 6920. Subsection. 2.2.2. (2020)
[4] European standard: EN 579. (2003)
[5] U.S. department of energy. (2004)
دانش نما شماره پياپي 166-165
/ج