احتما لات در آمار
تهیه کننده : عبدالامیر کربلایی
منبع : راسخون
منبع : راسخون
هدف آموزشی فصل
مفاهیم اولیه:
بنابراین فضای نمونه ایS:
و برآمدها e1,e2,… e:
پیشامد : زیر مجموعه ای از فضای نمونه ای را یک پیشامد نامیم
A,B,…
توجه شودکه: برآمدها (e) می توانند به صورت یک نقطه تنها یا دو تایی مرتب ویا ... n تایی مرتب باشند :به مثالهای زیر توجه شود.
مثال :
5- فرض کنید آزمایشی دردومرحله انجام شود.ابتدا سکه ای پرتاب می شود.اگر خط بیاید، تاس پرتاب می شود واگر شیر بیاید ، سکه دوباره پرتاب می شود.فضای نمونه ای را تعریف کرده وپیشامدهای زیر را تعریف کنید .
الف. آمدن شیردراولین پرتاب
ب. آمدن عددی فرد وقتی تاس پرتاب شود .
6- فرض کنید سکه ای را آنقدر پرتاب می کنیم تا اولین شیر ظاهر شود .فضای نمونه ای را مشخص کنید .
حل : این فضای نمونه ای نامتناهی ولیکن شمارا است . چنین فضای نمونه ای را فضای نمونه ای گسسته نامیم .
S={H,TH,TTH,TTTH,..}
اما مثال های 1 تا 5 ، دارای فضای نمونه ای متناهی می باشند .
این فضای نمونه ای ، یک فضای پیوستار است . به عبارت دیگر چنین فضای نمونه ای را ، فضای نمونه از نوع پیوسته گوییم .فضای نمونه پیوسته وقتی رخ می دهد که برآمدهای آزمایش ها ،اندازه گیری هایی با ویژگی های فیزیکی هستند که بر طبق مقیاس های پیوسته اندازه گیری می شوند . مانند : طول ، دما و ...می توانیم بر اساس پیشامد ها ، ترکیبی از پیشامد ها را داشته باشیم.
ترکیب پیشامدها
7- پیشامد مطمئن : پیش آمدی که یقینا رخ دهد .
8- پیشامد ناممکن : پیشامدی که یقینا رخ ندهد .
9- تساوی : دو پیشامد E,Fرا برابر گوییم (E=F، هر گاه رخ دادن یکی مستلزم رخ دادن دیگری باشد .
مثال :فرض کنید فرود هواپیماها بر اساس نظام سرویس دهی به ترتیب فرود می باشد . پیشامدهای را به صورت زیر تعریف می کنیم :
منتظر ماندن حداکثر3هواپیما :F منتظر ماندن حداقل2هواپیما : E
منتظر ماندن دقیقا2هواپیما : H در این صورت تعریف کنید:
حل :
پیشامد های زیررا تعریف می کنیم:
الف. پیشامد منتظر ماندن حداکثر3هواپیما
ب. پیشامد منتظر ماندن حداقل4هواپیما
اکنون آماده ایم تا اصول موضوع احتمال را بیان کنیم .
اصول موضوع احتمال
مثال :
سکه ی نااریبی را پرتاب می کنیم . از آن جایی که سکه نااریب است ، بنابراین احتمال آمدن شیر و خط با هم برابر است . در پرتاب این سکه فضای نمونه ای برابر است با : S={H,T}
چون وقوع پیشامدهای {H},{T} با هم برابرند در این صورت گوییم این دو پیشامد هم احتمالند و می نویسیم P({H})=P({T})
از طرفی این دو پیشامد ناسازگارند ، پس :
مثال :
اندازه احتمال قابل قبول باشد .
قضایا :
نتیجه :
مثال :
فرض کنید 25% مردم یک شهر روزنامه A و 20% روزنامه B و 13% روزنامه C و 10% روزنامه های A,B و 8% روزنامه های A,C و 5% روزنامه های B,C و 4% همه ی روزنامه ها را می خوانند . احتمال این که شخصی به تصادف از بین مردم این شهر انتخاب شود و هیچ یک از این روزنامه ها را نخواند چقدر است ؟
حل :
فرض می کنیم E و F و G به ترتیب پیشامدهای خواندن روزنامه های A ، B و C باشند . پس پیشامد آن که شخصی حداقل
احتمال شرطی :
( قانون ضرب احتمال )
به محض آن که A و B مستقل از یکدیگر باشند ، رابطه بالا به صورت ساده ای تبدیل می شود :
استقلال :
مثال :
فرض کنید جعبه ای شامل 10 لامپ می باشد که دربین آن ها 4 لامپ معیوب وجود دارد . دو لامپ پشت سر هم و بدون جایگذاری استخراج می کنیم . احتمال این که هر دو لامپ معیوب باشند چقدر است ؟
حل :
قانون احتمال کل – قضیه بیز :
کل استفاده کنیم
این قضیه به صورت زیر بیان می شود :
مثال :
یادآوری:
مثال: فرض می کنیم به ترتیب 30% و 50% و 20% محصولات یک تولیدی بوسیله ی سه دستگاه A ، B وC تولید می شود . از طرفی معلوم شده است که به ترتیب 4% ، 5% و 3% این تولیدات ناقص می باشد . اگر محصولی به تصادف انتخاب شود احتمال این که معیوب باشد چقدر است ؟
حل :
احتمال پیشامد خراب بودن : p(D)
دراین حالت در حقیقت می خواهیم p(B|D) را مورد نظر قرار دهیم دراین حالت از قضیه ی موسوم به قضیه بیز استفاده می کنیم .
قضیه بیز :
مثال :
1- برای مثال قبل مطلوب است احتمال اینکه محصولی که به تصادف انتخاب می شود و معیوب است ، متعلق به دستگاه C باشد .
حل :
2- فرض کنید می دانیم80% دانشجویان سال سوم و70% دانشجویان سال دوم و50% دانشجویان سال اول و30% دانشجویان پیش دانشگاهی ازکتابخانه استفاده می کنند. اگرازهمه ی دانشجویان 30% پیش دانشگاهی ، 25% سال اول ، 25% سال دوم و20% سال سوم باشند ، در اینصورت چند درصد همه ی دانشجویان از کتابخانه ی مرکزی استفاده می کنند ؟
حل :
دانشجویی که به تصادف انتخاب می شود و از کتابخانه ی مرکزی استفاده می کند :A
پیش دانشگاهی : F
سال اول :O
سال دوم :J
سال سوم :E
آنالیز ترکیبی
موضوع آنالیز ترکیبی را تشکیل می دهند .
یکی از موضوعات اساسی در آنالیز ترکیبی اصل های جمع و ضرب است که در عین سادگی اهمیت و کاربرد دارند . بعد از این دو اصل ، موضوع ترتیب و ترکیب از موضوعات پرکاربردند که ما در این قسمت خلاصه ای از آن ها را بیان می کنیم .
اصل جمع
بیان ریاضی اصل جمع :
تعمیم اصل جمع
اصل ضرب
مثال :
برای انتخاب دو کتاب از دو رشته مختلف از بین 6 کتاب ریاضی ، 7 کتاب ادبی ، 12 کتاب فلسفی انتخاب می کنیم . چند انتخاب متفاوت خواهیم داشت ؟
حل :
کتاب ها ممکن است به صورت های: الف. ریاضی و ادبی ب. ریاضی و فلسفی ج. ادبی و فلسفی باشند ، که با توجه به بیان اصل ضرب خواهیم داشت :
الف. ریاضی و ادبی 42=7×6
ب. ریاضی و فلسفی 72=12×6
ج. ادبی و فلسفی 84=12×7
و بنابر اصل جمع در کل تعداد انتخاب ها برابر است با : 198=84+72+42
ترتیب
این قضیه برای انتخاب گروه های r تایی مرتب از n شیء متمایز است .لازم به ذکر است که تمایز در این جا به این معناست که
1) مجموعه اشیاء بکار رفته متمایز باشند
2) ترتیب قرار گرفتن اشیاء متفاوت باشد .
ترکیب
ترکیب n شیء r به r
منابع
1-كتاب آمار و احتمال مهندسي جان فروند
2-http://daneshnameh.roshd.ir
3--http://bekrizadeh.blogfa.com
4- http://statisticslu.blogfa.com
/خ