با ذهن تان به سرعت محاسبه کنيد!
در اين مقاله به ارائه روش هاي محاسباتي پرداخته شده که براي انجام عمليات جبري و محاسباتي کاربرد وسيعي دارند. از آنجا که روش هاي ذکر شده در اين مقاله پر تعداد هستند پيشنهاد مي شود ابتدا يک روش آن را طي چند روز به کار گيريد تا اين روش در حافظه ثبت شود و در ضمير ناخودآگاه قرار گيرد و سپس به سراغ روش هاي ديگر برود.
بسياري از ما با ساده کردن عبارت هاي جبري آشنايي داريم و از اين روش ها به وفور استفاده مي کنيم، اما اغلب هيچ کوششي براي آسان کردن محاسبه هاي عددي نمي کنيم و به صورت کاملاً خطي با آنها مواجه مي شويم و به همان صورتي که به ما ارائه مي شود آنها را حل مي کنيم. قدم نخست در تسهيل و تسريع محاسبه ها، تبديل آنها به محاسباتي ساده تر است. مثلاً، هر چند ضرب يا تقسيم يک عدد بر 4 بسيار ساده است و اغلب ما قادر هستيم اين عمل را در ذهن انجام دهيم، اما از آن ساده تر اين است که همان عدد را دوبار در 2 ضرب يا تقسيم کنيم، همين کار را براي عدد 8 نيز مي توانيم انجام دهيم. يعني سه بار در 2 ضرب يا تقسيم کنيم. اما اين کار براي عدد 16 مناسب نيست زيرا نگه داشتن حساب چهار بار تقسيم و ضرب در عدد 2 ممکن است خود سبب اشتباه شود. البته براي اين محاسبه هم روش هايي هست که در جاي خود به آن مي پردازيم.
براي ضرب 4 دو بار در 2 ضرب کن:
136 =2×68 =2×2×34=4×34
براي تقسيم بر 4 دو بار بر 2 تقسيم کن:
18 =2÷36 =3÷2÷72 =4÷72
براي ضرب در 8 سه بار در 2 ضرب کن:
128 =2×64 =2×2×32 =2×2×2×16 =8×16
براي تقسيم بر 8 سه بار بر 2 تقسيم کن:
13 =2÷26 =2÷2÷52 =2÷2÷2÷104 =8÷104
آن چه در اينجا بايد تذکر دهم اين است که اين دستور و ساير دستورها براي ساده کردن محاسبه ها است و اگر در جايي احساس کرديد محاسبه قدري برايتان دشوار است، بهتر خواهد بود که از روش هاي ديگري که برايتان خواهم گفت استفاده کنيد تا سرعت محاسبه شما به اندازه کافي بالا برود. حال محاسبه هاي زير را انجام دهيد.
؟ =4×79
؟ =8×32
؟ =4×67
؟ =4×34
؟ =4×44
؟ =69×4
داستان 5
3440 ={0}2÷688 =5×688
در اين جا عدد 688 را بر 2 تقسيم کرديم و يک صفر در مقابل آن قرار داديم. به همين راحتي! اين دستور به خصوص در مورد عددهاي زوج کارايي بيشتري دارد زيرا شما خيلي راحت قادريد نصف هر عدد زوجي را بگوييد.
بنابراين:
براي ضرب هر عددي در 5، عدد را بر 2 تقسيم کن و يک صفر مقابل آن بگذار.
؟ =5×257
؟ =5×462
؟ =5×888
؟ =5×144
؟= 5×48
حال فرض کنيد مي خواهيد 212 را بر 5 تقسيم کنيد با توجه به آن چه گفته شد حدس مي زنيد چه بايد کرد بله درست حدس زديد اين بار اين عدد را در 2 ضرب کنيم و يک رقم به اعشار برويم يعني:
42/4={/}2×212 =5÷212
بنابراين:
براي تقسيم هر عدد بر 5 آن عدد را 2 ضرب کن و يک رقم به اعشار برو.
؟ =5÷237
؟ =5÷412
؟ =5÷93
؟ =5÷436
؟ =5÷132
ضرب و تقسيم عددها در 25
حال فرض کنيد به عنوان مثال مي خواهيد عدد 444 را در عدد 25 ضرب کنيد براي اين کار کافي است اين عدد را بر 4 تقسيم کنيد و دو صفر مقابل آن بگذاريد يعني:
111000={00}4÷444+25×444
براي عددهايي که مي بينيد تقسيم بر 4 قدري زمان بر است و نياز به فکر دارد، دو بار عدد مورد نظر را بر 2 تقسيم کنيد. مثلاً 375 را اگر بخواهيم در 25 ضرب کنيم، ابتدا يک بار بر 2 تقسيم کنيد و عدد 187/5 را به دست آوريد و سپس يک بار ديگر اين عدد را نصف کرده و به عدد 93/75 مي رسيم و چون دو رقم به اعشار رفته ايم هم از مميزها و هم از دو صفر صرف نظر کرده و جواب 9375 خواهد شد.
بنابراين:
براي ضرب در 25 دو بار بر 2 تقسيم کن و دو صفر مقابلش بگذار.
؟ =25×18
؟ =25×47
؟ =25×25
؟ =25×24
؟ =25×88
حال برويم به سراغ تقسيم اعداد بر 25:
براي تقسيم بر 25 دو بار در 2 ضرب کن و دو رقم به اعشار برو.
حالا نوبت شماست که تمرين کنيد:
؟ =25÷71
؟ =25÷53
؟ =25÷23
؟ =25÷92
؟ =25÷14
؟ =25÷17
حال که بحث به اين جا کشيده شده، بد نيست بدانيد عين همين مرحله ها را در مورد عدد 125 نيز با تغييرات جزيي مي توان انجام داد. ترتيب کار به اين صورت است که مثلاً بخواهيم عدد 48 را در عدد 125 ضرب کنيم کافي است که اين عدد را بر 8 تقسيم کنيم و سه صفر مقابل آن بگذاريم که عدد 6000 پاسخ اين ضرب خواهد شد يعني:
6000 ={000} 6 ={000} 8÷48 =125×48
پس دستور کلي ما چنين خواهد بود:
براي ضرب در 125 سه بار بر 2 تقسيم کن و سه صفر مقابل آن بگذار.
پس:
براي تقسيم بر 125 سه بار در 2 ضرب کن و سه رقم به اعشار برو.
؟ =125÷7
؟ =125×56
؟ =125÷36
؟ =125×32
مجذور کردن عددهايي که يکان آنها 5 است
مجذور کردن عددهايي که دهگان آنها 5 است
در اينجا بد نيست مطلبي را تذکر دهم. همان طور که مي دانيد، مجذور 50 عدد 2500 است. بنابراين هيچ عدد دو رقمي که دهگان آن 5 باشد وجود ندارد که کوچک تر از اين عدد باشد پس وقتي در مورد عددي مثل 52 يکان را به توان 2 رسانديم حاصل را که عدد 4 است به صورت 04 نوشته و در جاي يکان و دهگان مي نويسيم و بقيه کارها را به همان ترتيب انجام دهيم يعني:
2704+22 بتوان 2+25 =52 بتوان 2
2704+52 بتوان 2
اين روش را هم با قدري تأمل مي توانيد براي عددهاي سه رقمي به کار ببريد.
ضرب عددهاي مختلف در عدد 15
فرض کنيد مي خواهيد عدد 34 را در 15 ضرب کنيد. اگر نصف 34 را که 17 مي شود با 34 جمع کنيد 51 خواهد شد و اگر صفري سمت راست آن بگذاريد 510 مي شود که حاصل ضرب 15 در 34 است اگر عددي که در 15 ضرب مي شود فرد باشد مثل عدد 23 نصف آن يعني 11/5 را با خودش جمع کرديم يعني 34/5 =11/5+23 از مميز حاصل جمع صرف نظر کرده و صفري هم مقابل آن نمي گذاريم. بنابراين پاسخ در اينجا 345 مي شود. حال شما با اين روش ضرب هاي زير را انجام دهيد:
؟ =33×15
؟ =48×15
؟ =56×15
؟ =88×15
ضرب عددهاي مختلف در عدد 75
دو بار بر دو تقسيم کن، در 3 ضرب کن و دو صفر سمت راستش بگذار.
سعي کنيد براي تسلط بيشتر بر موضوع، تمرين هاي زير را حل کنيد:
؟ =52×75
؟ =44×75
؟ =13×75
؟ =28×75
امتحان عمل ضرب
فرض کنيد مي خواهيم درستي ضرب 220= 25×89 را بررسي کنيم.
ابتدا رقم هاي هر يک از عامل هاي ضرب را با هم جمع مي کنيم.
7 =5+2 و 16 =8+8
اگر عددهاي به دست آمده دو رقمي شد باز هم رقم هايشان را با هم جمع مي کنيم تا به عددي يک رقمي برسيم يعني: 7 =6+1: 16
حالا عددهاي يک رقمي به دست آمده را در هم ضرب مي کنيم 49=7×7. اگر حاصل جمع رقم هاي اين حاصل ضرب با جمع رقم هاي جواب مورد بررسي يکسان شود، نشان دهنده آن است که ضرب را درست انجام داده ايم و در صورت مغايرت، نشان دهنده نادرست بودن حاصل ضرب است. يعني:
4 =0+2+2: 220
4 =3+1: 13 =4+9: 49
چنان چه مشاهده مي شود، دو عدد به دست آمده يکي شدند؛ پس ضرب را درست انجام داده ايم. نکته اي که سبب بالا رفتن بيشتر سرعت در اين روش امتحان ضرب وجود دارد، اين است که وقتي در جمع کردن عددها به عدد 9 مي رسيم مي توانيم به جاي آن عدد صفر را قرار دهيم. مثلاً در همين مثال اخير وقتي به عدد 49 رسيديم مي توانستيم به جاي جمع کردن 4 و 9 عدد 4 را با صفر جمع کنيم که در هر صورت نتيجه يکي مي شد.
اما بايد بگويم که اين روش امتحان، نقصي هم دارد و آن اين است که اشتباهات فاحش را نشان نمي دهد. مثلاً اگر ما جواب را 22، 4، و يا 490 هم به دست آورديم فرقي نمي کرد و در ظاهر اين محاسبه ما صحيح نشان داده مي شد، ولي از آن جا که معمولاً اشتباهاتي به اين بزرگي را مرتکب نمي شويم، اين روش مي تواند کارايي نسبتاً خوبي داشته باشد.
و بايد اين نکته را هم مذکر شوم که تنها نگراني ما در خصوص تعداد صفرهاي حاصل ضرب بايد باشد که اشتباه فاحش اما رايجي است که در اين روش، اشتباه مذکور آشکار نخواهد شد.
ضرب در عدد 11 و ...
3762 =11×03420
سؤالي که در اين جا مطرح مي شود اين است که اگر حاصل جمع ها عددي دو رقمي شود چه وضعيتي پيش مي آيد؟ پاسخ بسيار ساده است؛ رقم دهگان را به جمع بعدي اضافه مي کنيم.
ضرب در عددهاي 12 و 13 و ... 19 با کمي تفاوت بسيار شبيه آن چيزي است که در مورد 11 گفته شد. مثلاً در مورد 12 پس از آن که صفرها را در دو طرف عدد گذاشتيم، هر رقم را 2 برابر کرده با عدد سمت راست خود جمع مي کنيم و يا در مورد عدد 13، ابتدا رقم ها را 3 برابر مي کنيم و سپس با عدد سمت راست جمع مي زنيم و به همين ترتيب به يکان 14 و 15 و ... و 19 توجه کرده رقم ها را 4 و 5 و ... و 9 برابر کرده با عدد سمت راست خود جمع مي کنيم.
بهتر است از اين شيوه در مورد عددهاي زير 15 استفاده شود چون نگه داشتن ذهني عددهاي بزرگ تر قدري دشوار است و از سرعت محاسبه شما مي کاهد. حالا ضرب هاي زير را انجام دهيد.
؟ =12×64
؟ =12×34
؟ =14×11
ضرب در عدد 9
تقسيم بر عدد 9 و ...
اگر عددي يک رقمي را بر 9 تقسيم کنيم ديده مي شود در قسمت جوان آن عدد به شکل متناوب بعد از مميز تکرار مي شود اين موضوع در مورد عددهاي چند رقمي هم صدق مي کند، مشروط بر اين که تعداد رقم هاي مقسوم و مقسوم عليه يکسان باشد.
مثلاً: 0/639639639 =999÷639
و حالا سعي کنيد مثال هاي زير را به روش گفته شده در بالا حل کنيد
؟ =9999÷1739
؟ =99÷78
؟ =999÷546
ضرب يک هاي متوالي
الف)تعداد رقم هاي دو عدد يکسان باشد:
ب)تعداد رقم هاي دو عدد يکسان نيست:
مثلاً فرض کنيد دو عدد 11 و 111 را مي خواهيد در هم ضرب کنيد در اين حالت عدد کوچک تر دو رقمي است پس شمارش به سمت بالا تا عدد 2 پيش مي رود يعني تا اين جا دو رقم سمت چپ جواب ما 12 است با توجه به اين که عدد بزرگ تر ما سه رقمي است، رقم 2 يک بار ديگر نوشته مي شود تا رقم هاي سمت چپ پاسخ ما با تعداد رقم هاي عدد بزرگ تر يکي شود.
[يعني رقم هاي سمت چپ جواب تا اين جا 122 مي شود] و بعد از اين مرحله شمارش معکوس به سمت 1را شروع مي کنيم و در نهايت کل رقم هاي جواب يعني 1221 را خواهيم داشت با توجه به آن چه گفته شد مثال هاي زير را حل کنيد.
؟ =11111×1111
؟ =1111×111
؟ =11111×11
ضرب دو عدد به وسيله ميانگين آنها
مجذور نصف تفاضل دو عدد را از مجذور ميانگين آنها کم کن.
همان طور که مي دانيد، ميانگين اين دو عدد 20 است؛ و مجذور عدد اخير 400. حالا تفاضل اين دو عدد را که عدد 2 مي شود نصف کرده به توان 2 مي رسانيم و از 400 کم مي کنيم و به عدد 399 که حاصل ضرب نهايي است مي رسيم.
هر چند اين دستور براي همه عددها قابليت اجرا دارد، اما در محاسبات سريع ما از اين دستور در دو زمان استفاده مي کنيم:
الف)زماني که ميانگين دو عدد، عددي مي شود که رقم هاي سمت راست آن صفر باشد (مانند مثال اخير).
ب)زماني که مجذور ميانگين دو عدد را به طريقي بدانيم (مانند روش هاي ارائه شده در مورد عددهايي مثل 35، 52 و ...). دستوري که گفته شد در ابتدا قدري به نظر دشوار است، اما اگر چند عدد را به اين شيوه در هم ضرب کنيد متوجه مي شويد که استفاده از آن چندان سخت نيست و کاربرد آن نيز طيف وسيعي از عددها را در بر مي گيرد.
حال تمرين هاي زير را انجام دهيد.
؟ =15×25
؟ =17×13
؟ =18×22
؟ =24×16
در انتها، مروري کلي داريم بر مطالب اين مقاله:
ــ براي تقسيم بر 4 دو بار بر 2 تقسيم کن.
ــ براي ضرب در 8 سه بار بر 2 ضرب کن.
ــ براي تقسيم در 8 سه بار بر 2 تقسيم کن.
ــ براي ضرب هر عددي در 5، عدد را بر 2 تقسيم کن و يک صفر مقابل آن بگذار.
ــ براي تقسيم هر عدد بر 5 آن عدد را در 2 ضرب کن و يک رقم به اعشار برو.
ــ براي ضرب در 25 دو بار بر 2 تقسيم کن و دو صفر مقابلش بگذار.
ــ براي تقسيم بر 25 دو بار در 2 ضرب کن و دو رقم به اعشار برو.
ــ براي ضرب در 125 سه بار بر 2 تقسيم کن و سه صفر مقابل آن بگذار.
ــ براي تقسيم بر 125 سه بار در 2 ضرب کن و سه رقم به اعشار برو.
ــ براي ضرب در 15 با نصف خودش جمع کن و صفري سمت راستش بگذار.
ــ براي ضرب در 75 دو بار بر 2 تقسيم کن و در 3 ضرب کن و دو صفر سمت راستش بگذار.
ــ براي ضرب در 11 دو طرف عدد، صفر بگذار، هر رقم را با سمت راستش جمع کن.
براي ضرب از طريق ميانگين، مجذور نصف تفاضل دو عدد را از مجذور ميانگين آنها کم کن.
منبع: دانشمند، شماره 576