مثلثات
مطالعه روی زوایا و روابط موجود میان زوایای اشکال مسطح و سه بعدی مثلثات نامیده میشود.تابع مثلثاتی از قبیل سینوس و کسینوس توابعی هستند که بوسیله روابط هندسی تعریف میشوند.
مختصات نجومی (سه دستگاه مختصات نجومی وجود دارد که با مثلثات کروی کار میکنند)
اندازه گیری زوایای میل ، سمت ، عرض جغرافیایی ، طول جغرافیایی و ... در این دستگاهها با ابزار مثاثات کروی ممکن هست.
انحراف محور خورشید (دایرةالبروج خورشید) را از روی مثلثات کروی میسنجند.
در اندازه گیری فواصل نجومی و تنظیم اوقات شرعی ، طلوع و غروب خورشید و رصدهای نجومی مثلثات کروی نقش بسزایی دارد.
تحلیل مسیرهای ماهواره های زمینی مصنوعی نشان داده است که یک بیضی وار مناسب با سه محور بهترین شکل را برای شبه کره به دست می دهد. در واقع تفاوت بین دو محور واقع در صفحه استوایی(equatorial plane) آنقدر کوچک است که تاکنون برای اندازه گیریهای زمینی مشخص نشده است. بنابراین در ژئودرزی عالی، کره زمین به صورت کره وار spheroid در نظر گرفته می شود. در این مورد، اولین محاسبات دقیق توسط فردریش ویلهلم بسل انجام گرفت. در 1924 بیضوار محاسبه شده توسط "J.HAYFORD"از لحاظ بین المللی شناخته شد. جدیدترین مقادیر توسط "F.N.KRASOVSKIL" مشخص شده اند.این مقادیر برای کار در ژئودزی در روسیه به کار میروند.
بعدها از رادیو برای انتقال علامت زمانی برای جهت یابی تقریبی کفایت می کند. در تعیین دقیق موضع مورد نظر باید اطلاعات مربوط به وضعیت ستارگان بسادگی قرار گرفته و حرکت خورشید، سیارات، ماه و ماههای مشتری و دستگاههای مختصاتنجومی را که وضعیتهای واقع در افلاک درآنها داده شده اند بدانیم. اطلاعاتی از نجوم کروی که برای مقاصد دریانوردی دارای اهمیت اند در تقویمهای دریانوردی و نجومی آورده شده اند از دستگاههای افقی و استوایی. این دستگاهها مانند تمام دستگاههای مختصاتی نجومی، مبتنی بر این حقیقت اند که آسمان پرستاره در نظر رصدکننده به صورت قسمتی از کره ای عظیم موسوم به کره سماوی آشکار می شود. موضع هر نقطه واقع بر این کره را می توان با استفاده از دو مختص عددی مشخص کرد.
هر دایره عظیمه با قطبهایش به عنوان دستگاهی مرجع برای این دو مختص مناسب است. بر این دایره یک زاویه در جهت مشخص شده از نقطه ای معلوم اندازه گیری می شود و اندازه دومی بر اندازه عظیمه عمومی گذرنده از نقطه ای که می خواهیم موضعش را معین کنیم و قطب دایره مبنا معین می شود.
منبع: http://daneshnameh.roshd.ir
/خ
تاریخچه
کاربردها
کاربرد مثلثات کروی
مختصات نجومی (سه دستگاه مختصات نجومی وجود دارد که با مثلثات کروی کار میکنند)
اندازه گیری زوایای میل ، سمت ، عرض جغرافیایی ، طول جغرافیایی و ... در این دستگاهها با ابزار مثاثات کروی ممکن هست.
انحراف محور خورشید (دایرةالبروج خورشید) را از روی مثلثات کروی میسنجند.
در اندازه گیری فواصل نجومی و تنظیم اوقات شرعی ، طلوع و غروب خورشید و رصدهای نجومی مثلثات کروی نقش بسزایی دارد.
مثلثات و علم جغرافی
تحلیل مسیرهای ماهواره های زمینی مصنوعی نشان داده است که یک بیضی وار مناسب با سه محور بهترین شکل را برای شبه کره به دست می دهد. در واقع تفاوت بین دو محور واقع در صفحه استوایی(equatorial plane) آنقدر کوچک است که تاکنون برای اندازه گیریهای زمینی مشخص نشده است. بنابراین در ژئودرزی عالی، کره زمین به صورت کره وار spheroid در نظر گرفته می شود. در این مورد، اولین محاسبات دقیق توسط فردریش ویلهلم بسل انجام گرفت. در 1924 بیضوار محاسبه شده توسط "J.HAYFORD"از لحاظ بین المللی شناخته شد. جدیدترین مقادیر توسط "F.N.KRASOVSKIL" مشخص شده اند.این مقادیر برای کار در ژئودزی در روسیه به کار میروند.
نجوم کروی
بعدها از رادیو برای انتقال علامت زمانی برای جهت یابی تقریبی کفایت می کند. در تعیین دقیق موضع مورد نظر باید اطلاعات مربوط به وضعیت ستارگان بسادگی قرار گرفته و حرکت خورشید، سیارات، ماه و ماههای مشتری و دستگاههای مختصاتنجومی را که وضعیتهای واقع در افلاک درآنها داده شده اند بدانیم. اطلاعاتی از نجوم کروی که برای مقاصد دریانوردی دارای اهمیت اند در تقویمهای دریانوردی و نجومی آورده شده اند از دستگاههای افقی و استوایی. این دستگاهها مانند تمام دستگاههای مختصاتی نجومی، مبتنی بر این حقیقت اند که آسمان پرستاره در نظر رصدکننده به صورت قسمتی از کره ای عظیم موسوم به کره سماوی آشکار می شود. موضع هر نقطه واقع بر این کره را می توان با استفاده از دو مختص عددی مشخص کرد.
هر دایره عظیمه با قطبهایش به عنوان دستگاهی مرجع برای این دو مختص مناسب است. بر این دایره یک زاویه در جهت مشخص شده از نقطه ای معلوم اندازه گیری می شود و اندازه دومی بر اندازه عظیمه عمومی گذرنده از نقطه ای که می خواهیم موضعش را معین کنیم و قطب دایره مبنا معین می شود.
منبع: http://daneshnameh.roshd.ir
/خ