فیبر نوری چگونه کار می کند؟
هرجا که صحبت از سیستم های جدید مخابراتی، سیستم های تلویزیون کابلی و اینترنت باشد، در مورد فیبر نوری هم چیزهایی میشنوید.
فیبرهای نوری از شیشه شفاف و خالص ساخته میشوند و با ضخامتی به نازکی یک تار موی انسان، میتوانند اطلاعات دیجیتال را در فواصل دور انتقال دهند. از آنها همچنین برای عکسبرداری پزشکی و معاینه های فنی در مهندسی مکانیک استفاده میشود.
در این مقاله میخوانیم که این فیبرهای نوری چگونه نور را منتقل میکنند و نیز درمورد روش عجیب ساخت آنها !
اگر با دقت به یک رشته فیبر نوری نگاه کنید، می بینید که از قسمتهای زیر ساخته شده :
• هسته _ هسته بخش مرکزی فیبر است که از شیشه ساخته شده و نور در این قسمت سیر میکند.
• لایه روکش _ واسطه شفافی که هسته مرکزی فیبر نوری را احاطه میکند وباعث انعکاس نور به داخل هسته میشود.
• روکش محافظ _ روکشی پلاستیکی که فیبر نوری در برابر رطوبت و آسیب دیدن محافظت میکند.
صدها یا هزاران عدد از این رشته های فیبر نوری بصورت بسته ای در کنار هم قرار داده میشوند که به آن کابل نوری گویند. این دسته از رشته های فیبر نوری با یک پوشش خارجی موسوم به ژاکت یا غلاف محافظت میشوند.
فیبرهای نوری دو نوعند :
• فیبرهای نوری تک وجهی _ این نوع از فیبرها هسته های کوچکی دارند ( قطری در حدود inch (۴-) ۱۰x ۵/۳ یا ۹ میکرون ) و میتوانند نور لیزر مادون قرمز ( با طول موج ۱۳۰۰ تا ۱۵۵۰ نانومتر ) را درون خود هدایت کنند.
• فیبرهای نوری چند وجهی _ این نوع از فیبرها هسته های بزرگتری دارند ( قطری در حدود inch (۳-) ۱۰x ۵/۲ یا ۵/۶۲ میکرون ) و نور مادون قرمز گسیل شده از دیودهای نوری موسوم به LEDها را ( با طول موج ۸۵۰ تا ۱۳۰۰ نانومتر ) درون خود هدایت میکنند.
برخی از فیبرهای نوری از پلاستیک ساخته میشوند. این فیبرها هسته بزرگی ( با قطر ۴ صدم inch یا یک میلیمتر ) دارند و نور مریی قرمزی را که از LEDها گسیل میشود ( و طول موجی برابر با ۶۵۰ نانومتر دارد ) هدایت میکنند.
بیایید ببینیم طرز کار فیبر نوری چیست.
برای این منظور میتوانید از یک آینه استفاده کنید که در محل خمیدگی راهرو قرار میگیرد و نور را در جهت مناسب منحرف میکند. اگر راهرو خیلی پیچ در پیچ باشد و خمهای زیادی داشته باشد چه؟ میتوانید دیوارها را با آینه بپوشانید و نور را به دام بیندازید بطوریکه در طول راهرو از یک گوشه به گوشه دیگر بپرد. این دقیقا همان چیزی است که در یک فیبرنوری اتفاق می افتد.
نور در یک کابل فیبرنوری، بر اساس قاعده ای موسوم به بازتابش داخلی، مرتبا بوسیله دیواره آینه پوش لایه ای که هسته را فراگرفته، به این سو و آن سو پرش میکند و در طول هسته پیش میرود.
از آنجا که لایه آینه پوش اطراف هسته هیچ نوری را جذب نمیکند، موج نور میتواند فواصل طولانی را طی کند. به هر حال، برخی از سیگنالهای نوری در حین حرکت در طول فیبر، ضعیف میشوند که علت عمده آن وجود برخی ناخالصیها داخل شیشه است. میزان ضعیف شدن سیگنال به درجه خلوص شیشه بکار رفته در داخل فیبر و نیز طول موج نوری که درون فیبر سیر میکند بستگی دارد (بعنوان مثال
۸۵۰ نانومتر = ۶۰ تا ۷۵ درصد در هر یک کیلومتر
۱۳۰۰ نانومتر = ۵۰ تا ۶۰ درصد در هر یک کیلومتر
۱۵۵۰ نانومتر = بیش از ۵۰ درصد در هر یک کیلومتر ).
برخی از فیبرهای نوری هم هستند که سیگنال در داخل آنها خیلی کم تضعیف میشود. (کمتر از ۱۰ درصد در هر یک کیلومتر برای ۱۵۵۰ نانومتر ).
حالا فرض کنید این دو کشتی هر یک در گوشه ای از اقیانوسند و هزاران مایل فاصله دارند و در فاصله بین آنها یک سیستم ارتباطی فیبرنوری وجود دارد.
سیستم های ارتباط بوسیله فیبرنوری، شامل این قسمت هاست:
• فرستنده _ سیگنالهای نور را تولید میکند و به رمز در میاورد.
• فیبرنوری _ سیگنالهای نور را تا فواصل دور هدایت میکند.
• تقویت کننده نوری _ ممکن است برای تقویت سیگنالهای نوری لازم باشد. (برای ارسال سیگنال به فواصل خیلی دور)
• گیرنده نوری _ سیگنالهای نور را دریافت و رمزگشایی میکند.
فرستنده درعمل به فیبر نوری متصل میشود و حتی ممکن است دارای لنزی برای متمرکز کردن نور به داخل فیبر هم باشد. قدرت اشعه لیزر بیش از LEDهاست اما با کم و زیاد شدن دما شدت نورشان تغییر میکند و گرانتر هم هستند. متداول ترین طول موجهایی که استفاده میشود عبارتند از: ۸۵۰ نانومتر، ۱۳۰۰ نانومتر و ۱۵۵۰ نانومتر. (مادون قرمز و طول موجهای نامریی طیف )
یک تقویت کننده نوری دارای فیبرهای نوری با پوشش ویژه ای است. نور ضعیف شده پس از ورود به این تقویت کننده تحت تاثیر این پوشش خاص و نیز نور لیزری که به این پوشش تابیده میشود تقویت میشود. ملکولهای موجود در این پوشش ویژه با تابش لیزر به آنها، سیگنال نوری جدید و قوی تولید میکنند که مشخصات آن مشابه نور ورودی به تقویت کننده است. درواقع تقویت کننده نوری یک آمپلی فایر لیزری برای نور ورودی به آن است. جزییات بیشتر را در سایت www.Photonics.com ببینید.
ارزان تر بودن _ فیبر نوری بطول چندین مایل از سیم مسی با همین طول ارزانتر است. این قیمت مناسب باعث میشود که بتوانید تلویزیون کابلی یا اینترنت را هر جایی در اختیار داشته باشید و در پول شما هم صرفه جویی میشود.
نازکتر بودن _ فیبرنوری با ضخامتی کمتر از ضخامت سیم مسی تولید میشود و این مزیت بزرگی است.
ظرفیت انتقال بالاتر _ از آنجا که فیبرنوری نازکتر از سیمهای مسی است، بنابراین در کابلی با قطر معلوم تعداد فیبرنوری بیشتری جا میگیرد تا سیم مسی. پس این امکان فراهم میشود که از کابلی با قطر مشابه تعداد خطوط تلفن بیشتر یا تعداد کانال های تلویزیونی بیشتری عبور داده شود.
تضعیف کمتر سیگنال _ سیگنال عبوری از فیبرنوری نسبت به سیگنال عبوری از سیم مسی کمتر ضعیف میشود.
سیگنال های نوری _ برخلاف سیگنالهای الکتریکی در سیمهای مسی که با سیگنالهای عبوری از کابلهای نزدیک تداخل میکنند، سیگنالهای نوری در فیبرنوری حتی با سیگنالهای عبوری از فیبری که در همان کابل است هم تداخل نمیکند. بنابراین صدا در مکالمات تلفنی واضح تر منتقل میشود و کانال های تلویزیونی هم بهتر دریافت میشوند.
کم مصرف بودن _ ازانجا که سیگنالها در فیبرنوری کمتر ضعیف میشوند، بنابراین فرستنده های کم مصرف تری نسبت به فرستنده های با ولتاژ بالا در سیمهای مسی نیاز است. این مزیت باز هم باعث صرفه جویی در هزینه ها میشود.
سیگنالهای دیجیتال _ بهترین و اصلی ترین کاربرد فیبر نوری انتقال اطلاعات دیجیتال است که بخصوص برای شبکه های کامپیوتری مفید است.
اشتعال ناپذیری _ چون هیچ الکتریسیته ای از فیبرنوری عبور نمیکند، خطر اشتعال هم وجود ندارد.
سبک بودن _ فیبرنوری درمقایسه با سیم مسی وزن کمتری دارد و فضای کمتری را میگیرد.
انعطاف پذیری _ ازانجا که فیبرهای نوری بسیار انعطاف پذیرند و میتوانند نور را ارسال و دریافت کنند، در بسیاری از دوربین های انعطاف پذیر و تاشو در اهداف زیر کاربرد دارند:
§ عکسبرداری پزشکی _ در bronchoscope ( لوله ای نازک برای عکسبرداری از نایچه ها )،§ در endoscope ( برای تصویربرداری از اعضای توخالی بدن مثل معده و مثانه )،§ و در laparoscope ( ابزاری پزشکی برای بررسی معده و برخی جراحی های کوچک ) کاربرد دارد.
§ تصویربرداری ماشینی _ برای چک کردن جوشهایی که در لوله ها و موتورها بصورت ماشینی اجرا میشود. ( مثلا در هواپیماها،§ راکتها،§ شاتلهای فضایی و ماشینها )
§ لوله کشی _ برای بررسی مجاری فاضلاب
بخاطر وجود این مزایاست که شما فیبرنوری را در بسیاری از صنایع، در ارتباطات برجسته امروزی و شبکه های کامپیوتری میبینید. مثلا اگر از آمریکا به اروپا تلفن بزنید (یا برعکس)، و این ارتباط از طریق یک ماهواره مخابراتی انجام شود، اغلب میشنوید که صدا دچار تکرار و انعکاس میشود. ولی باوجود فیبرنوری ارتباط شما مستقیم و بدون پژواک است.
برای ساخت فیبرنوری بایستی مراحل زیر طی شود:
ساخت یک استوانه شیشه ای از پیش تعین شده
کشیدن فیبر از استوانه آماده شده
آزمایش فیبرهای تولید شده
ساخت استوانه شیشه ای
شیشه مورد استفاده برای ساخت استوانه طی روندی موسوم به MCVD یا رسوب سازی تعدیل شده شیمیایی با بخار تولید میشود.
در روش MCVD اکسیژن از میان محلول کلراید سیلیکون (SiCl۴)، کلراید ژرمانیوم (GeCl۴) و دیگر مواد شیمیایی میجوشد (قلقل میکند).
این مخلوط بسیار دقیق و حساب شده، ویژگیهای فیزیکی و اپتیکی گوناگونی دارد. ( ازجمله ضریب شکست، ضریب انبساط، نقطه ذوب و … )
سیلیکون و ژرمانیوم با اکسیژن واکنش میدهند، دی اکسید سیلیکون (SiO۲) و دی اکسید ژرمانیوم (GeO۲) حاصل میشود.
دی اکسید سیلیکون و دی اکسید ژرمانیوم روی سطح داخلی لوله رسوب میکنند، باهم آمیخته میشوند تا شیشه شکل بگیرد.
استوانه شیشه ای در یک کوره گرافیتی داغ میشود ( ٣٤٥٢ تا ٣٩٩٢ درجه فارنهایت یا ١٩٠٠ تا ٢٢٠٠ درجه سانتیگراد ) تا حدی که یک گلوله گداخته شده از نوک آن، تحت تاثیر نیروی جاذبه سقوط میکند. گلوله شیشه ای مذاب در حین سقوط خنک میشود و یک رشته شیشه ای را بوجود می آورد.
متصدی دستگاه این رشته را در داخل دیگر قسمتهای برج از جمله تعدادی فنجانک اندود کننده و نیز کوره ماوراء بنفش نخ کشی میکند تا در نهایت به قرقره پایین دستگاه برسد.
قرقره مکانیکی فیبر را به آرامی از استوانه داغ شده میکشد. یک ریزسنج لیزری بدقت این مرحله را کنترل میکند و قطر فیبر را اندازه میگیرد. اطلاعات بدست آمده از ریزسنج به سیستم خودکار قرقره مکانیکی ارسال میشود. فیبرها با سرعت ٣٣ تا ٦٦ فوت بر ثانیه ( ١٠ تا ٢٠ متر بر ثانیه ) از استوانه داغ کشیده میشوند و محصول نهایی روی قرقره پیچیده میشود. معمولا در نهایت بیش از ٤/١ مایل ( ٢/٢ کیلومتر ) فیبرنوری روی قرقره جمع نمیشود.
موضوع برخی آزمایشها که روی فیبرنوری تولید شده انجام میشود:
مقاومت کششی _ فیبر باید بتواند نیروی کشش معادل ٠٠٠/١٠٠ پوند بر اینچ مربع یا بیشتر را تحمل کند.
آزمایش میزان تضعیف امواج در فیبرنوری _ در این آزمایش مشخص میشود که سیگنالهای نوری در طول موجهای مختلف چه مقدار انرژی خود را از حین عبور از فیبر دست میدهند.
ظرفیت انتقال اطلاعات (پهنای باند) _ تعداد سیگنالهایی که در هر لحظه میتواند بوسیله فیبر منتقل شود.
طیف رنگی _ انتشار طول موجهای مختلف نور در هسته فیبر که در بحث پهنای باند حایز اهمیت است.
دمای عملیاتی / دامنه تغییرات رطوبت
وقتی فیبر مراحل آزمایش را طی کرد، به شرکتهای فعال در زمینه تلفن، کابل و شبکه فروخته میشود. در حال حاضر بسیاری از شرکتها سیستمهای نوین مبتنی بر فیبرنوری را جایگزین سیستمهای قدیمی مبتنی بر سیم مسی کرده اند تا سرعت، ظرفیت و وضوح بیشتری حاصل شود.
در یک زاویه خاص (زاویه بحرانی) نور شکسته شده به محیط دوم وارد نمیشود و در عوض در امتداد خط جداکننده دو محیط حرکت میکند.
Sin [critical angle ] = n۲ / n۱ که n۱ و n۲ ضرایب شکست اند بطوریکه n۱ < n2 . اگر زاویه پرتو محیط اول نسبت به خط عمود فرضی، از زاویه بحرانی بزرگتر باشد، در این حالت پرتو شکسته شده بطور کامل بداخل همان محیط اول منعکس میشود ( پدیده بازتابش داخلی کلی ). حتی اگر محیط دوم شفاف باشد و بتواند نور را عبور دهد.
در فیزیک زاویه بحرانی نسبت به خط عمود فرضی تعریف میشود. در فیبرنوری، زاویه بحرانی نسبت به محوری موازی با فیبر که در مرکز آن امتداد دارد توصیف میشود. بنابراین
( زاویه بحرانی فیزیکی – ٩٠ درجه ) = زاویه بحرانی در فیبرنوری
در یک فیبرنوری نور در هسته (با ضریب شکست بزرگتر، m۱) سیر میکند و مرتبا با برخورد به لایه روکش (با ضریب شکست کوچکتر، m۲) شکسته میشود چون زاویه نور همیشه از زاویه بحرانی بزرگتر است. در انعکاس نور از سطح روکش، مقدار زاویه انحنای فیبر تاثیر ندارد حتی اگر فیبرنوری یک دایره کامل ساخته باشد!
ازانجا که لایه روکش هیچ نوری از هسته جذب نمیکند، موج نور میتواند مسافتهای طولانی را طی کند. ولی بهرحال برخی سیگنالهای نوری در حین عبور از فیبر ضعیف میشوند که دلیل عمده آن ناخالصیهای موجود در شیشه است.
میزان تضعیف سیگنال به درجه خلوص شیشه و طول موج نور عبوری از فیبر بستگی دارد ( مثلا نور با طول موج ٨٥٠ نانومتر در هر یک کیلومتر ٦٠ تا ٧٥ درصد ضعیف میشود. نور با طول موج ١٣٠٠ نانومتر ٥٠ تا ٦٠ درصد در هر یک کیلومتر و نور با طول موج ١٥٥٠ نانومتر بیش از ٥٠ درصد در هر کیلومتر تضعیف میشود. ) برخی از انواع فیبرنوری کارایی بهتری دارند و سیگنال نور در آنها کمتر انرژی خود را از دست میدهد – کمتر از ١٠ درصد در هر یک کیلومتر برای طول موج ١٥٥٠ نانومتر.
منبع:http://www.academist.ir
/خ
فیبرهای نوری از شیشه شفاف و خالص ساخته میشوند و با ضخامتی به نازکی یک تار موی انسان، میتوانند اطلاعات دیجیتال را در فواصل دور انتقال دهند. از آنها همچنین برای عکسبرداری پزشکی و معاینه های فنی در مهندسی مکانیک استفاده میشود.
در این مقاله میخوانیم که این فیبرهای نوری چگونه نور را منتقل میکنند و نیز درمورد روش عجیب ساخت آنها !
فیبرنوری چیست؟
اگر با دقت به یک رشته فیبر نوری نگاه کنید، می بینید که از قسمتهای زیر ساخته شده :
• هسته _ هسته بخش مرکزی فیبر است که از شیشه ساخته شده و نور در این قسمت سیر میکند.
• لایه روکش _ واسطه شفافی که هسته مرکزی فیبر نوری را احاطه میکند وباعث انعکاس نور به داخل هسته میشود.
• روکش محافظ _ روکشی پلاستیکی که فیبر نوری در برابر رطوبت و آسیب دیدن محافظت میکند.
صدها یا هزاران عدد از این رشته های فیبر نوری بصورت بسته ای در کنار هم قرار داده میشوند که به آن کابل نوری گویند. این دسته از رشته های فیبر نوری با یک پوشش خارجی موسوم به ژاکت یا غلاف محافظت میشوند.
فیبرهای نوری دو نوعند :
• فیبرهای نوری تک وجهی _ این نوع از فیبرها هسته های کوچکی دارند ( قطری در حدود inch (۴-) ۱۰x ۵/۳ یا ۹ میکرون ) و میتوانند نور لیزر مادون قرمز ( با طول موج ۱۳۰۰ تا ۱۵۵۰ نانومتر ) را درون خود هدایت کنند.
• فیبرهای نوری چند وجهی _ این نوع از فیبرها هسته های بزرگتری دارند ( قطری در حدود inch (۳-) ۱۰x ۵/۲ یا ۵/۶۲ میکرون ) و نور مادون قرمز گسیل شده از دیودهای نوری موسوم به LEDها را ( با طول موج ۸۵۰ تا ۱۳۰۰ نانومتر ) درون خود هدایت میکنند.
برخی از فیبرهای نوری از پلاستیک ساخته میشوند. این فیبرها هسته بزرگی ( با قطر ۴ صدم inch یا یک میلیمتر ) دارند و نور مریی قرمزی را که از LEDها گسیل میشود ( و طول موجی برابر با ۶۵۰ نانومتر دارد ) هدایت میکنند.
بیایید ببینیم طرز کار فیبر نوری چیست.
یک فیبر نوری چگونه نور را هدایت میکند؟
برای این منظور میتوانید از یک آینه استفاده کنید که در محل خمیدگی راهرو قرار میگیرد و نور را در جهت مناسب منحرف میکند. اگر راهرو خیلی پیچ در پیچ باشد و خمهای زیادی داشته باشد چه؟ میتوانید دیوارها را با آینه بپوشانید و نور را به دام بیندازید بطوریکه در طول راهرو از یک گوشه به گوشه دیگر بپرد. این دقیقا همان چیزی است که در یک فیبرنوری اتفاق می افتد.
نور در یک کابل فیبرنوری، بر اساس قاعده ای موسوم به بازتابش داخلی، مرتبا بوسیله دیواره آینه پوش لایه ای که هسته را فراگرفته، به این سو و آن سو پرش میکند و در طول هسته پیش میرود.
از آنجا که لایه آینه پوش اطراف هسته هیچ نوری را جذب نمیکند، موج نور میتواند فواصل طولانی را طی کند. به هر حال، برخی از سیگنالهای نوری در حین حرکت در طول فیبر، ضعیف میشوند که علت عمده آن وجود برخی ناخالصیها داخل شیشه است. میزان ضعیف شدن سیگنال به درجه خلوص شیشه بکار رفته در داخل فیبر و نیز طول موج نوری که درون فیبر سیر میکند بستگی دارد (بعنوان مثال
۸۵۰ نانومتر = ۶۰ تا ۷۵ درصد در هر یک کیلومتر
۱۳۰۰ نانومتر = ۵۰ تا ۶۰ درصد در هر یک کیلومتر
۱۵۵۰ نانومتر = بیش از ۵۰ درصد در هر یک کیلومتر ).
برخی از فیبرهای نوری هم هستند که سیگنال در داخل آنها خیلی کم تضعیف میشود. (کمتر از ۱۰ درصد در هر یک کیلومتر برای ۱۵۵۰ نانومتر ).
سیستم ارتباط بوسیله فیبرنوری
حالا فرض کنید این دو کشتی هر یک در گوشه ای از اقیانوسند و هزاران مایل فاصله دارند و در فاصله بین آنها یک سیستم ارتباطی فیبرنوری وجود دارد.
سیستم های ارتباط بوسیله فیبرنوری، شامل این قسمت هاست:
• فرستنده _ سیگنالهای نور را تولید میکند و به رمز در میاورد.
• فیبرنوری _ سیگنالهای نور را تا فواصل دور هدایت میکند.
• تقویت کننده نوری _ ممکن است برای تقویت سیگنالهای نوری لازم باشد. (برای ارسال سیگنال به فواصل خیلی دور)
• گیرنده نوری _ سیگنالهای نور را دریافت و رمزگشایی میکند.
فرستنده
فرستنده درعمل به فیبر نوری متصل میشود و حتی ممکن است دارای لنزی برای متمرکز کردن نور به داخل فیبر هم باشد. قدرت اشعه لیزر بیش از LEDهاست اما با کم و زیاد شدن دما شدت نورشان تغییر میکند و گرانتر هم هستند. متداول ترین طول موجهایی که استفاده میشود عبارتند از: ۸۵۰ نانومتر، ۱۳۰۰ نانومتر و ۱۵۵۰ نانومتر. (مادون قرمز و طول موجهای نامریی طیف )
تقویت کننده نوری
یک تقویت کننده نوری دارای فیبرهای نوری با پوشش ویژه ای است. نور ضعیف شده پس از ورود به این تقویت کننده تحت تاثیر این پوشش خاص و نیز نور لیزری که به این پوشش تابیده میشود تقویت میشود. ملکولهای موجود در این پوشش ویژه با تابش لیزر به آنها، سیگنال نوری جدید و قوی تولید میکنند که مشخصات آن مشابه نور ورودی به تقویت کننده است. درواقع تقویت کننده نوری یک آمپلی فایر لیزری برای نور ورودی به آن است. جزییات بیشتر را در سایت www.Photonics.com ببینید.
گیرنده نوری
چرا فیبر نوری باعث بوجود آمدن انقلابی در ارتباطات شده است؟
ارزان تر بودن _ فیبر نوری بطول چندین مایل از سیم مسی با همین طول ارزانتر است. این قیمت مناسب باعث میشود که بتوانید تلویزیون کابلی یا اینترنت را هر جایی در اختیار داشته باشید و در پول شما هم صرفه جویی میشود.
نازکتر بودن _ فیبرنوری با ضخامتی کمتر از ضخامت سیم مسی تولید میشود و این مزیت بزرگی است.
ظرفیت انتقال بالاتر _ از آنجا که فیبرنوری نازکتر از سیمهای مسی است، بنابراین در کابلی با قطر معلوم تعداد فیبرنوری بیشتری جا میگیرد تا سیم مسی. پس این امکان فراهم میشود که از کابلی با قطر مشابه تعداد خطوط تلفن بیشتر یا تعداد کانال های تلویزیونی بیشتری عبور داده شود.
تضعیف کمتر سیگنال _ سیگنال عبوری از فیبرنوری نسبت به سیگنال عبوری از سیم مسی کمتر ضعیف میشود.
سیگنال های نوری _ برخلاف سیگنالهای الکتریکی در سیمهای مسی که با سیگنالهای عبوری از کابلهای نزدیک تداخل میکنند، سیگنالهای نوری در فیبرنوری حتی با سیگنالهای عبوری از فیبری که در همان کابل است هم تداخل نمیکند. بنابراین صدا در مکالمات تلفنی واضح تر منتقل میشود و کانال های تلویزیونی هم بهتر دریافت میشوند.
کم مصرف بودن _ ازانجا که سیگنالها در فیبرنوری کمتر ضعیف میشوند، بنابراین فرستنده های کم مصرف تری نسبت به فرستنده های با ولتاژ بالا در سیمهای مسی نیاز است. این مزیت باز هم باعث صرفه جویی در هزینه ها میشود.
سیگنالهای دیجیتال _ بهترین و اصلی ترین کاربرد فیبر نوری انتقال اطلاعات دیجیتال است که بخصوص برای شبکه های کامپیوتری مفید است.
اشتعال ناپذیری _ چون هیچ الکتریسیته ای از فیبرنوری عبور نمیکند، خطر اشتعال هم وجود ندارد.
سبک بودن _ فیبرنوری درمقایسه با سیم مسی وزن کمتری دارد و فضای کمتری را میگیرد.
انعطاف پذیری _ ازانجا که فیبرهای نوری بسیار انعطاف پذیرند و میتوانند نور را ارسال و دریافت کنند، در بسیاری از دوربین های انعطاف پذیر و تاشو در اهداف زیر کاربرد دارند:
§ عکسبرداری پزشکی _ در bronchoscope ( لوله ای نازک برای عکسبرداری از نایچه ها )،§ در endoscope ( برای تصویربرداری از اعضای توخالی بدن مثل معده و مثانه )،§ و در laparoscope ( ابزاری پزشکی برای بررسی معده و برخی جراحی های کوچک ) کاربرد دارد.
§ تصویربرداری ماشینی _ برای چک کردن جوشهایی که در لوله ها و موتورها بصورت ماشینی اجرا میشود. ( مثلا در هواپیماها،§ راکتها،§ شاتلهای فضایی و ماشینها )
§ لوله کشی _ برای بررسی مجاری فاضلاب
بخاطر وجود این مزایاست که شما فیبرنوری را در بسیاری از صنایع، در ارتباطات برجسته امروزی و شبکه های کامپیوتری میبینید. مثلا اگر از آمریکا به اروپا تلفن بزنید (یا برعکس)، و این ارتباط از طریق یک ماهواره مخابراتی انجام شود، اغلب میشنوید که صدا دچار تکرار و انعکاس میشود. ولی باوجود فیبرنوری ارتباط شما مستقیم و بدون پژواک است.
فیبرنوری چگونه ساخته میشود؟
برای ساخت فیبرنوری بایستی مراحل زیر طی شود:
ساخت یک استوانه شیشه ای از پیش تعین شده
کشیدن فیبر از استوانه آماده شده
آزمایش فیبرهای تولید شده
ساخت استوانه شیشه ای
شیشه مورد استفاده برای ساخت استوانه طی روندی موسوم به MCVD یا رسوب سازی تعدیل شده شیمیایی با بخار تولید میشود.
در روش MCVD اکسیژن از میان محلول کلراید سیلیکون (SiCl۴)، کلراید ژرمانیوم (GeCl۴) و دیگر مواد شیمیایی میجوشد (قلقل میکند).
این مخلوط بسیار دقیق و حساب شده، ویژگیهای فیزیکی و اپتیکی گوناگونی دارد. ( ازجمله ضریب شکست، ضریب انبساط، نقطه ذوب و … )
فرآیند MCVD برای ساخت استوانه
سیلیکون و ژرمانیوم با اکسیژن واکنش میدهند، دی اکسید سیلیکون (SiO۲) و دی اکسید ژرمانیوم (GeO۲) حاصل میشود.
دی اکسید سیلیکون و دی اکسید ژرمانیوم روی سطح داخلی لوله رسوب میکنند، باهم آمیخته میشوند تا شیشه شکل بگیرد.
ماشین مورد استفاده برای ساخت استوانه
کشیدن فیبر از استوانه آماده شده
استوانه شیشه ای در یک کوره گرافیتی داغ میشود ( ٣٤٥٢ تا ٣٩٩٢ درجه فارنهایت یا ١٩٠٠ تا ٢٢٠٠ درجه سانتیگراد ) تا حدی که یک گلوله گداخته شده از نوک آن، تحت تاثیر نیروی جاذبه سقوط میکند. گلوله شیشه ای مذاب در حین سقوط خنک میشود و یک رشته شیشه ای را بوجود می آورد.
متصدی دستگاه این رشته را در داخل دیگر قسمتهای برج از جمله تعدادی فنجانک اندود کننده و نیز کوره ماوراء بنفش نخ کشی میکند تا در نهایت به قرقره پایین دستگاه برسد.
قرقره مکانیکی فیبر را به آرامی از استوانه داغ شده میکشد. یک ریزسنج لیزری بدقت این مرحله را کنترل میکند و قطر فیبر را اندازه میگیرد. اطلاعات بدست آمده از ریزسنج به سیستم خودکار قرقره مکانیکی ارسال میشود. فیبرها با سرعت ٣٣ تا ٦٦ فوت بر ثانیه ( ١٠ تا ٢٠ متر بر ثانیه ) از استوانه داغ کشیده میشوند و محصول نهایی روی قرقره پیچیده میشود. معمولا در نهایت بیش از ٤/١ مایل ( ٢/٢ کیلومتر ) فیبرنوری روی قرقره جمع نمیشود.
موضوع برخی آزمایشها که روی فیبرنوری تولید شده انجام میشود:
مقاومت کششی _ فیبر باید بتواند نیروی کشش معادل ٠٠٠/١٠٠ پوند بر اینچ مربع یا بیشتر را تحمل کند.
آزمایش منحنی ضریب شکست
آزمایش میزان تضعیف امواج در فیبرنوری _ در این آزمایش مشخص میشود که سیگنالهای نوری در طول موجهای مختلف چه مقدار انرژی خود را از حین عبور از فیبر دست میدهند.
ظرفیت انتقال اطلاعات (پهنای باند) _ تعداد سیگنالهایی که در هر لحظه میتواند بوسیله فیبر منتقل شود.
طیف رنگی _ انتشار طول موجهای مختلف نور در هسته فیبر که در بحث پهنای باند حایز اهمیت است.
دمای عملیاتی / دامنه تغییرات رطوبت
تاثیر دما در تضعیف سیگنال عبوری
وقتی فیبر مراحل آزمایش را طی کرد، به شرکتهای فعال در زمینه تلفن، کابل و شبکه فروخته میشود. در حال حاضر بسیاری از شرکتها سیستمهای نوین مبتنی بر فیبرنوری را جایگزین سیستمهای قدیمی مبتنی بر سیم مسی کرده اند تا سرعت، ظرفیت و وضوح بیشتری حاصل شود.
فیزیک بازتابش کلی
در یک زاویه خاص (زاویه بحرانی) نور شکسته شده به محیط دوم وارد نمیشود و در عوض در امتداد خط جداکننده دو محیط حرکت میکند.
Sin [critical angle ] = n۲ / n۱ که n۱ و n۲ ضرایب شکست اند بطوریکه n۱ < n2 . اگر زاویه پرتو محیط اول نسبت به خط عمود فرضی، از زاویه بحرانی بزرگتر باشد، در این حالت پرتو شکسته شده بطور کامل بداخل همان محیط اول منعکس میشود ( پدیده بازتابش داخلی کلی ). حتی اگر محیط دوم شفاف باشد و بتواند نور را عبور دهد.
در فیزیک زاویه بحرانی نسبت به خط عمود فرضی تعریف میشود. در فیبرنوری، زاویه بحرانی نسبت به محوری موازی با فیبر که در مرکز آن امتداد دارد توصیف میشود. بنابراین
( زاویه بحرانی فیزیکی – ٩٠ درجه ) = زاویه بحرانی در فیبرنوری
در یک فیبرنوری نور در هسته (با ضریب شکست بزرگتر، m۱) سیر میکند و مرتبا با برخورد به لایه روکش (با ضریب شکست کوچکتر، m۲) شکسته میشود چون زاویه نور همیشه از زاویه بحرانی بزرگتر است. در انعکاس نور از سطح روکش، مقدار زاویه انحنای فیبر تاثیر ندارد حتی اگر فیبرنوری یک دایره کامل ساخته باشد!
ازانجا که لایه روکش هیچ نوری از هسته جذب نمیکند، موج نور میتواند مسافتهای طولانی را طی کند. ولی بهرحال برخی سیگنالهای نوری در حین عبور از فیبر ضعیف میشوند که دلیل عمده آن ناخالصیهای موجود در شیشه است.
میزان تضعیف سیگنال به درجه خلوص شیشه و طول موج نور عبوری از فیبر بستگی دارد ( مثلا نور با طول موج ٨٥٠ نانومتر در هر یک کیلومتر ٦٠ تا ٧٥ درصد ضعیف میشود. نور با طول موج ١٣٠٠ نانومتر ٥٠ تا ٦٠ درصد در هر یک کیلومتر و نور با طول موج ١٥٥٠ نانومتر بیش از ٥٠ درصد در هر کیلومتر تضعیف میشود. ) برخی از انواع فیبرنوری کارایی بهتری دارند و سیگنال نور در آنها کمتر انرژی خود را از دست میدهد – کمتر از ١٠ درصد در هر یک کیلومتر برای طول موج ١٥٥٠ نانومتر.
منبع:http://www.academist.ir
/خ