رادار
رادار چيست؟
چکيده :
امواج رادار چيزي است كه در تمام اطراف ما وجود دارد، اگر چه ديده نميشود. اما مركز كنترل ترافيك فرودگاهها براي رديابي هواپيماها چه آنها كه بر روي باند فرودگاه قرار دارند و چه آنها كه در حال پرواز هستند، از رادار استفاده ميكنند. در برخي از كشورها پليس از رادار براي شناسايي خودروهاي با سرعت غير مجاز استفاده ميكند. ناسا از رادار براي شناسايي موقعيت كرة زمين و ديگر سيارات استفاده ميكند، همين طور براي دنبال كردن مسير ماهواره ها و فضاپيماها و براي كمك به كشتيها در دريا و مانورهاي رزمي از آن استفاده ميشود. مراكز نظامي نيز براي شناسايي دشمن و يا هدايت جنگ افزارهايشان از آن استفاده ميكنند.
هواشناسان براي شناسايي طوفانها، تندبادهاي دريايي و گردبادها از آن استفاده ميبرند. شما حتي نوعي خاص از رادار را در مدخل ورودي فروشگاهها ميبينيد كه در هنگام قرار گرفتن اشخاص در مقابلشان، درب را باز ميكنند. بطور واضح ميبينيد كه رادار وسيله اي بسيار كاربردي ميباشد.
استفاده از رادار عموماً در راستاي سه هدف زير ميباشد:
شناسايي حضور يا عدم حضور يك جسم در فاصله هاي مشخص – عمدتاً آنچه كه شناسايي ميشود متحرك است و مانند هواپيما، اما رادار قادر به شناسايي حضور اجسامی كه مثلاً در زيرزمين نيز مدفون شده اند، نيز ميباشد. در بعضي از موارد حتي رادار ميتواند ماهيت آنچه را كه مييابد مشخص كند، مثلاً نوع هواپيمايي كه شناسايي ميكند.
شناسايي سرعت آن جسم- دقيقاً همان هدفي كه پليس در بزرگراهها براي كنترل سرعت خودروها از آن استفاده ميكند.
جابهجايي اجسام – شاتلهاي فضايي و ماهواره هاي دوار بر دور كره زمين از چيزي به عنوان رادار براي شناسايي حفره هاي مجازي ، تهيه نقشه جزئيات زمين ، نقشه هاي عوارض جغرافيايي سطح ماه و ديگر سيارات استفاده ميكنند.
مقدمه
همه ما بارها و بارها بازگشت صدا را در مقابل صخرههاي عظيم تجربه کرده ايم. نور خورشيد هم با استفاده از همين پديده است که از سوي ماه و در هنگام شب به ما میرسد.
امواج راديويي و الکترومغناطيس نيز قابليت انعکاس و بازتاب دارند و رادار بر اساس همين خاصيت ساده بوجود آمد. سادهترين رادارها در حقيقت از يک فرستنده و يک گيرنده راديويي بوجود آمدند. در ابتدا اين وسيله فقط قادر بود وجود شيء را اعلان کند و به هيچ وجه توانايي تشخيص اندازه و ويژه گي هاي ديگر آن را نداشت. بنابرين بشر در ساخت رادار نيز از طبيعت استفادههاي فراوان و اساسي کرده و با تغييراتي جزئي براي خود وسيله اي سودمند ساخته است.
تاريخچه
به همين دليل يک فرانسوي ديگر به نام "موريس پونت" در سال 1930 موفق به اختراع دستگاهي جالب به نام "مانيترون" شد که امواج بسيار کوتاه راديويي را بوجود میآورد و به همين دليل رادارهايي که به کمک اين وسيله تکميل شدند توانستند تا دهها کيلومتر بيش از رادار قبلي امواج را ارسال کنند. دستگاه اختراعي پونت در سال 1935 ابتدا در کشتي معروفي به نام نرماندي نصب شد و توانست آن را از خطر برخورد با کوههاي عظيم يخي شناور در اقيانوس محافظت کند و بدين ترتيب رادار علاوه بر استفاده وسيع در هوا ، سطح درياها را هم به تسخير خود در آورد.
مکانيسم عمل
کاربردها
نظامی
رادارها حتی در توپخانهها ، موشک اندازها و جنگ های زیر دریاییها نیز وارد عمل شدند و توجه قدرتهای بزرگ تسلیحاتی را ، حتی پس از شکست هیتلر و پایان جنگ جهانی به خودشان جلب کردند. اما صرف نظر از کاربردها نظامی، رادار خدمات صلح آمیز بسیاری را بری انسان امروزی در برداشته است. کاهش سوانح در مسافرت های دریایی و هوایی همگی مدیون رادار هستند.
علمی
صنعتی وبازرگانی
مثالی از کاربرد رادار
امواج رادیویی با سرعتی معادل سرعت نور حركت میكنند، تقریباً در هر میكروثانیه 300 متر را در فضا طی میكنند؛ حال اگر سیستم رادار مذكور دارای یك ساعت بسیار دقیق و قوی باشد، میتواند با دقت بسیار بالایی موقعیت هواپیما را مشخص كند، با استفاده از روشهای خاص پردازش سیگنال برای تحلیل پدیده داپلر بر روی موجهای برگشتی میتوان به دقت سرعت هواپیما را مشخص كرد.
آنتن رادار ، یك دسته پالس امواج رادیویی كوچك (اما قدرتمند) را با یك فركانس مشخص منتشر می سازد. هنگامی كه امواج به یك جسم برخورد میكنند منعكس شده و در اثر پدیده داپلر فشرده تر یا گسسته تر میشوند. همان آنتن وظیفه دریافت امواج منعكس شده را كه البته بسیار كمتر از امواج ارسالی هستند بر عهده دارد.
در رادارهای زمینی قضیه خیلی پیچیدهتر از رادارهای هوایی است، هنگامی كه یك رادار پلیس به ارسال پالس موج رادیویی میپردازد بخاطر وجود اجسام بسیار در سر راهش مانند نردهها، پلها، تپه ها و ساختمانها پژواكهای بسیاری را دریافت میدارد، اما از آنجایی كه تمام این اجسام ثابت هستند به جزء خودروها مورد نظر، لذا سیستم رادار خودروهای پلیس ، از میان امواج منعكس شده، فقط آنهایی را انتخاب میكند كه در آنها پدیده داپلر قابل شناسایی است،( آن هم به اندازه ای كه جسم متحرك اضافه سرعت داشته باشد،) در ضمن آنتن این رادارها بسیار دهانه تنگی دارند، چرا كه فقط بر روی یك خودرو تنظیم میشوند.
البته امروزه پلیسها در برخی كشورها از جمله كشور خودمان از تكنولوژی لیزر برای تعیین سرعت خودروها در بزرگراهها استفاده میكنند. این تكنولوژی به نام «لیدار» شناخته میشود. در این مدل بجای امواج رادیویی از اشعه نوری متمركز (یا همان لیزر) استفاده میشود.
فضایی
رادار در طبیعت
تشخیص وجود یک جسم توسط رادار چگونه انجام مي شود؟
. پلیس از رادار برای بدست آوردن سرعت اتومبیل ها استفاده می کند . ناسا از رادار برای ترسیم نقشه سطح کره زمین و دیگر سیارات ، همچنین برای تعیین موقعیت ماهواره ها و اجسام فضایی وهدایت سفاین خود استفاده می کند. و در صنایع نظامی نیز رادار کاربردهای وسیعی از جمله کشف نیروهای دشمن و یا هدایت موشک دارد. هواشناسان از رادار برای ردیابی و تعیین سرعت و موقعیت توفان ها ، تندبادها و توده های هوا بهره می جویند و حتی شما می توانید نوعی از رادار را در ساختار دربهایی که به طور خودکار بروی شما گشوده می شوند نیز بیابید. پس همانطور که به نظر می رسد رادار یک وسیله بسیار سودمند است.
جایی از رادار استفاده می شود که غالبا یکی از اهداف زیر مد نظر است :
• تشخیص وجود یک جسم در فواصل دور که معمولا اجسام در حال حرکت هستند . اما رادارها قادرند اجسام ثابت و حتی اجسامی که در زیر خاک یا آوار مدفون شده اند را نیز تشخیص دهند. حتی در بعضی موارد رادارها می توانند نوع جسمی را که کشف کرده اند مشخص کنند مثلا رادارهایی که در صنایع هوایی مورد استفاده قرار می گیرند می توانند نوع هواپیما را هم تشخیص دهند.
• تشخیص سرعت حرکت یک جسم که این خاصیت رادارها دلیل استفاده پلیس از این وسیله است .
• نقشه برداری از سطوح : برخی سفینه های فضایی و ماهواره ها مجهز به وسیله ای به اسم Synthetic Aperture Radar هستند که از آن برای تهیه نقشه های توپوگرافی از سطح سیاره ها و اجسام فضایی دیگر استفاده می کنند.
هر سه مورد از کاربردهای بالا با بهره جویی از دو پدیده فیزیکی که در زندگی روزمره شما هم به طور متعدد اتفاق می افتد انجام می شوند : پدیده های صوتی اکو و داپلر ! مفهوم این دو پدیده صوتی برای شما براحتی قابل درک هستند زیرا گوشهای شما هر روز اصوات اکو و داپلر را می شنوند. رادار از این دو پدیده در غالب امواج صوتی استفاده می کند.
ما در این مقاله سعی داریم که که از رازهای رادار پرده برداریم . ابتدا به توضیح پدیده های اکو و داپلر می پردازیم که شما با آن آشناتر هستید.
اکو و داپلر
داپلر نیز یک پدیده رایج است . شما حتما بارها آن را تجربه کرده اید ( شاید بدون اینکه آن را درک کرده باشید). این پدیده هنگامی اتفاق می افتد که منبع صدا و یا منعکس کننده آن، یک جسم در حال حرکت باشد و این پدیده در نهایت منجر به تولید امواج سونیک می شود . حال به توضیح این پدیده می پردازیم .
تصور کنید اتومبیلی که با سرعت 60 مایل در ساعت بسوی شما در حال حرکت است بوق خود را به صدا در میاورد . هنگامی که اتومبیل در حال نزدیک شدن است صدای بوق آن هم بطور یکنواخت با نزدیک شدن اتومبیل بلند تر می شود اما هنگاهی که اتومبیل از مقابل شما عبور کرد صدای بوق بطور ناگهانی کم می شود . در حالی که این صدای یک بوق است که آن بوق همیشه یه صوت را تولید می کند اما پدیده داپلر باعث می شود که شما صدا را این گونه بشنوید.
چرا این اتفاق می افتد؟ سرعت صوت به شرط اینکه هوا ساکن باشد تقریبا در همه جا ثابت و حدود 600 مایل بر ساعت است. (سرعت دقیق آن بستگی به فشار و رطوبت هوا و دما دارد( .
تصور کنید اتومبیل متوقف است و دقیقا یک مایل با شما فاصله دارد و به مدت یک دقیقه بطور مداوم بوق می زند. امواج صوتی منتشر شده توسط بوق با سرعت 600 مایل بر ساعت به سمت شما حرکت می کنند و شما صدای بوق را با 6 ثانیه تاخیر خواهید شنید. (زیرا 6 ثانیه طول می کشد تا امواج با سرعت 600 مایل برساعت مسافت یک مایلی بین بوق و شما را طی کنند(
حالا اجازه دهید تصور کنیم که اتومبیل با سرعت 60 مایل بر ساعت به سمت شما حرکت می کند . مبدا حرکت اتومبیل مسافت یک مایلی شماست و به مدت یک دقیقه تمام هم بطور مداوم بوق می زند. شما باز هم صدا را با 6 ثانیه تاخیر خواهید شنید اما اینبار به نظر شما اتومبیل فقط 54 ثانیه بوق می زند. این بدین خاطر است که اتومبیل پس از یک دقیقه دقیقا مقابل شما خواهد بود و صدا در این لحظه بلا فاصله و بدون هیچ تاخیری به شما می رسد. اتومبیل (از دیدگاه راننده آن ) یک دقیقه کامل بطور مداوم بوق زده است زیرا او نیز همراه با اتومبیل در حال حرکت بوده و صدا بدون تاخیر به گوش او رسیده است . اما در جایگاه شما امواج صوتی که در طول یک دقیقه تولید شده است در 54 ثانیه فشرده می شود. در واقع تعداد یکسانی از امواج صوتی در مقدار کمتری از زمان بسته بندی شده اند. بنابراین فرکانس آنها افزایش یافته و شما با صدایی بلندتر از صدای واقعی آن را خواهید شنید. اما هنگامی که اتومبیل از مقابل شما عبور کرد همه این وقایع بصورت برعکس تکرار می شوند و مقدار یکسان صوت در مدت زمان بیشتری انتشار می یابد در نتیجه فرکانس کاهش می یابد و شما صدای آهسته تری از حد واقعی را خواهید شنید.
شما می توانید ترکیبی از اکو و داپلر را بصورت زیر تجربه کنید :
یک صدای بلند را به سمت اتومبیلی که بسوی شما در حرکت است ارسال کنید. برخی از امواج این صوت به اتومبیل برخورد کرده و به سمت شما منعکس می شوند( اکو). اما چون اتومبیل به سوی شما در حال حرکت است امواج صوتی بازگشتی فشرده می شوند بنابراین امواج بازگشتی فرکانس بیشتری از صدایی که شما ارسال کرده اید را دارند. با انجام محاسباتی روی مقدارتفاوت فرکانس امواج ارسالی و بازگشتی ، می توان سرعت اتومبیل را محاسبه نمود.
رادار ها چگونه کار می کنند ؟
• امواج صوتی برد کمی دارند و حداکثر پس از یک مایل نابود می شوند.
• امواج صوتی را تقریبا همه می توانند بشوند و بنابراین یک رادار صوتی می تواند برای افرادی که در اطراف آن هستند مزاحمت زیادی ایجاد کند.( که البته می توان این مشکل را با استفاده از امواج فراصوتی بجای امواج قابل شنیدن تا حد زیادی مرتفع کرد(
• امواج صوتی پس از اکو ضعیف می شوند و این، کشف و دریافت آنها را مشکل می کند.
بنابراین در رادارها بجای استفاده از امواج صوتی از امواج رادیویی استفاده می شود. امواج رادیویی برد زیادی دارند ، توسط انسانها قابل حس نیستند و کشف و دریافت آنها حتی هنگامی که ضعیف هم شده اند براحتی امکان پذیر است.
اجازه بدهید عملکرد یک رادار را که برای کشف هواپیماهای در حال پرواز طراحی شده است شرح دهیم . ابتدا مکانیزم ارسال در رادار فعال می شود و امواج رادیویی را با قدرت زیاد و فرکانس بالا را به طرف هواپیما ارسال می کند. مدت ارسال این امواج در حد یک میکروثانیه است. سپس مکانیزم ارسال در رادار غیر فعال شده و مکانیزم دریافت فعال می گردد و منتظر دریافت اکوی امواج ارسال شده می ماند. سیستم رادار مدت زمان بین ارسال امواج و دریافت اکوی آنها را به دقت اندازه گیری می کند. سرعت امواج رادیویی برابر با سرعت نور و در حدود 1000 فوت در هر یک میکروثانیه است . بنابراین اگر سیستم رادار از یک ساعت بسیار دقیق برخوردار باشد می تواند مسافت هواپیما با رادار را بسیار دقیق اندازه گیری کند و اگر مجهز به یک سیستم ویژه پردازشگر امواج نیز باشد می تواند امواج داپلر را به دقت بررسی کرده و سرعت هواپیما را به طور کاملا دقیق مشخص کند.
در رادارهای زمینی امکان مداخله امواج بسیار بیشتر از رادارهای هوایی است .هنگامی که یک رادار پلیس پالسی را ارسال می کند امواج آن به هر شیئ که در مقابل آن باشد مانند: حفاظهای جاده ، پل ها ، ساختمان ها ، کوه ها و ... برخورد کرده و اکو می شوند. بهترین راه برای فیلتر کردن امواج بازگشتی این است که بتوانیم امواج داپلر را از میان سایر امواج تشخیص دهیم . رادارهای پلیس فقط امواج داپلر را مورد بررسی قرار می دهند و چون این امواج بطور دقیق روی یک اتومبیل خاص فکوس شده می توانند سرعت آن اتومبیل را بدست آورند.
امروزه رادارهای پلیس از تکنولوژی لیزر برای بدست آوردن سرعت اتومبیل ها برخوردار گشته اند که این رادار های لیزری را لیدار می نامند. لیدار ها بجای امواج صوتی از نور استفاده می کنند.
اصول ونحوه عملکرد دستگاه رادار
4*335=1340 . مسافت بین منبع صدا و سطح موجود برابر: 1340/2=675 متر می باشد.
حال ببینیم کار رادار در سیستم PM چگونه هست؟
تصویری از رادار موشک هاک
سرعت امواج رادیویی برابر 300000 کیلومتر در ثانیه است.یا 300 متر در یک میلیونم ثانیه می باشد.چون برای ما مسافت منبع تامانع مورد نظر است پس باید 300 تقسم بر 2 شود و یا 150 متر را در زمان رفو برگشت ضرب کنیم تا مسافت بدست بیایید .مثلا اگر اکوی امواج ارسالی پس از 10 میکرو ثانیه برگردد ( دریافت شود) فاصله منبع تا هدف برابر 15010=1500 متر خواهد بود.
این فاصله را اپراتور دستگاه رادار می تواند به طور نظری روی اسکپ رادار خود مشاهده کند و موقعیت شیئی را نسبت به توقف گاه خود مشخص کند. پس میتوان گفت که رادار فاصله را محاسبه و اسکپ آن فاصله را برحسب مایل یا یارد نشان میدهد.پیدا کردن محل دقیق هدف زمانی صورت میگیرد که جهت انتن رادار برای قویترین اکو که از هدف منعکس میشود توجیه شده باشد.یعنی آنتن دقیقا در جهت هدف قرار بگیرد.مدارات موجود در رادار علاوه بر کشف وسایل پرنده می توانند ارتفاع یا زاویه اشیا را نسبت به دستگاه تعیین کنند. این مدارات را سیستم سنکرون رادار می نامند .ارتفاع هواپیما را با زاویه ایی که آنتن با سطح افق میسازد,تعیین میگردد.جهت هواپیما یا شی پرواز کنده نیز نسبت به شمال تعیین می شودزاویه بین شمال و آنتن را زاویه انحراف مینامند.
شرح مقدماتی دستگاه رادار
1-منبع تغذیه /2-اسکپ و تایمر /3-فرستنده /4-قسمت آر اف / 5-گیرنده
کلیه اعمال رادار از تایمر شروع میشوند و پس از اینکه در این قسمت تک پالس ها ساخته میشوند به مدلاتور و اسکپ ارسال میشود.مدلاتور با پالس تایمر تحریک شده و یک پالس با ولتاژ زیاد DC به نوسانساز رادار که لامپ مگنترون است اعمال مینماید.این پالس باعث میشود که مگنترون شروع به نوسان کند و مقادیری انرزی RF از طرق دوپلکسر و موجبر(ویوگاید)به انتن رسده و ارسال میگردد.
در انتهای این ارسال دوپلکسربرای دریافت تغییر وضعیت میدهد.و دستگاه برای دریافت اکو منتظر میماند!اکو های برگشتی به وسیله آنتن اخذ و از طریق موجبر به دوپلکسر و گیرنده میرسند.گیرنده نیز با دریافت اکو یک پالس به اسکپ میفرستد و اسکپ پالس اکو را با پالس اصلی که در تایمر ساخته شده بودمقایسه میکند,تاخیر بین ارسال پالس تایمر و پالس دریافت شده فاصله تا هدف را مشخص میکند.
آشکارسازی فعالیت های انسان از پشت موانع با استفاده از پویانمایی سیگنال های رادار دوپلر
به گزارش سرویس علم و فناوری پایگاه اطلاع رسانی صبا و به نقل از ساینس دیلی، لینگ در باره ی این پروژه گفت: "چندین برنامه ی تحقیقاتی در مورد تصویربرداری از پشت دیوار در حال انجام می باشد اما آن ها روی ساخت حسگرهای سخت افزاری با بسیاری از توانائی های مشخص تمرکز دارند. این کار گران قیمت است. آنچه ما می خواهیم در این پروژه انجام دهیم این است که اول بفهمیم حرکات انسان چگونه در داده های راداری آشکار می شود. سپس این دانش را برای تولید تصویر یک انسان استفاده کنیم."
سیستم های راداری فرکانس رادیویی مبتنی بر دوپلر به ویژه برای دنبال کردن رد انسان های متحرک مناسب می باشند. آن ها درهم ریختگی های پس زمینه را از اشیای ساکن جدا کرده و جزئیات کافی را جهت نمایش حرکات پویای قسمت های مختلف بدن را به شکل "میکرودوپلرها" ارائه می دهند.
لینگ گفت: "یک انسان، پویایی حرکتی بسیار پیچیده ای دارد. هنگام راه رفتن، بازوها و پاها بسیار متفاوت از پیچ و تاب خوردن حرکت می کنند و این حرکات لطیف و ریز به صورت علائم منحصربفرد میکرودوپلر ترجمه می شوند."
سیگنال های راداری، سمت چپ، تبدیل به پویانمایی فرد در حال راه رفتن، سمت راستی، می شوند. در سیگنال های رادار، پیچ و تابی که حرکت کمتری دارد به رنگ نارنجی ضخیم تر می باشد. بازوها و پاها که بیش تر حرکت می کنندبه رنگ زرد نازک تر می باشند.
لینگ و رم یک شبیه ساز رادار دوپلر مبتنی بر فیزیک و با استفاده از داده های پویانمایی رایانه ای از حرکات انسان ساختند.سپس آن ها مشخصات مانع را در نمونه ی شبیه سازی ترکیب کردند. در نهایت، نتایج را با یک نمونه ی آزمایشی رادار دوپلر که از پیش توسعه داده شده بود با حرکات زنده ی انسان در وضعیت های دید مستقیم و پشت موانع به لحاظ صحت بررسی کردند. چند تن از دانشجویان فارغ التحصیل پیشین و کنونی شامل یونگووک کیم، کرایگ کریستیانسون، نیک وایتلونیس و یانگ لی نیز در این پروژه مشارکت داشتند.
رم گفت: "علائم میکرودوپلر می توانند ابزارهای مهمی برای نظارت بر فعالیت های انسان در طول زمان های طولانی باشد. شبیه ساز رادار به ویژه یک وسیله ی قابل انعطاف و غیر گران است که ما می توانیم برای بهینه کردن پیکربندی های حسگر و الگوریتم های پردازش سیگنال از آن استفاده کنیم که برای تولید یک تصویر مجازی دقیق از انسان در پشت انواع مختلف موانع نیاز می باشد."
در نهایت، این فن آوری کاربردهای مهمی در عملیات جستجو و نجات، عملیات اجرایی قانونی و نظارت و مراقبت فیزیکی دارد.
منبع: http://forum.parsigold.com
/خ