واقعیتی جالب
یک گلوله که به طور افقی از اسلحه درون خلأ شلیک شده و هیچ مانعی در مسیر آن وجود ندارد، از قواعد حرکت پرتابی تبعیت میکند. شگفت آور است، اگر در لحظهای که ماشه فشار داده شود، گلوله مشابه دیگری به طور عمودی از همان ارتفاع پایین بیفتد، هر دو گلوله به صورت همزمان به زمین برخورد میکنند.وقتی سیب معروف شد که روی سر اسحاق نیوتن بزرگ افتاد. دو کار وجود داشت که او انجام نداد. او فریادهای دشنام آمیز به خاطر بالا آمدگی که روی سرش ایجاد شده بود نثار درخت نکرد، و نه تصمیم گرفت سیب را در آبمیوه گیری بیندازد و با خوردن همه آب میوهاش از سیب انتقام بگیرد. در عوض، آن چه او انجام داد، تدوین مجموعهای از قوانین بود که بعداً پایه و اساس مکانیک کلاسیک شد.
سینماتیک یا جنبش شناسی، که شاخهای از مکانیک کلاسیک است که به مطالعه حرکت اشیاء میپردازد، تقریباً کاملاً مبتنی بر این قوانین نیوتنی است. کاربرد جالب سینماتیک در مطالعه حرکت پرتابه است. این به ما اجازه میدهد تا انواع حرکات مختلف، درست از حرکت بیس بال و گلوله توپ تا حتی حرکت هواپیما را توصیف کنیم. به نظر شما جالب نیست؟ پس بیایید پیش برویم و در مورد آن بیشتر بدانیم.
حرکت پرتابی در فیزیک چیست؟
هنگامی که شما یک توپ را در هوا پرتاب میکنید، درست از لحظهای که دست خود را رها میکنید تا لحظهای که توپ به زمین میافتد یا گرفته میشود، حرکت آن به عنوان حرکت پرتابی شناخته میشود. اگر مسیر پرواز توپ را با خطوط نقطه چین بر روی یک تکه کاغذ ترسیم کنید، به شکل خمیدهای خواهید رسید. این مسیر مشخصهای است که توسط اشیاء در حرکت پرتابی دنبال میشود. به این ترتیب چرا توپ این مسیر منحنی را طی میکند؟ نیوتن توانست این موضوع را با توجه به گرانش توضیح دهد.وی تصریح کرد که دلیل سقوط اشیاء مختلف (از جمله سیب) به سمت زمین به جای این که به پرواز کردن در فضا ادامه دهند وجود نوعی نیروی جاذبه است که با آن زمین آنها را به طرف خود میکشد. نیوتن این نیرو را گرانش نامید. او همچنین قانونی را وضع کرد، به نام قانون دوم حرکت نیوتن، که به ما کمک میکند که وارد معادلهای شویم برای در نظر گرفتن مقدار نیروی گرانشی که روی اشیاء مختلف عمل میکند.
قانون دوم حرکت نیوتن: شتاب تولید شده توسط یک نیرو به طور مستقیم با بزرگی نیرو متناسب است و در جهت همان نیرو است و به صورت معکوس با جرم جسم متناسب است.
از نظر ریاضی ، اگر "m" جرم یک جسم باشد، و "a" شتاب آن به دلیل نیرویی باشد که بر روی آن اعمال میشود، آنگاه طبق این قانون a برابر است با f تقسیم بر m.
با استفاده مجدد از شرایط این معادله، داریم:
f = m × a
نیوتن توانست شتاب یک جسم در حال سقوط به طرف پایین بر اثر نیروی گرانش را برابر با 8ر9 متر بر مجذور ثانیه حساب کند. این مقدار برای تمام اشیاء روی سطح زمین ثابت میماند. این شتاب به صورت "g" نمایش داده میشود. از این رو، نیروی گرانشی که بر روی یک جسم دارای جرم "m" عمل میکند ، توسط m × g داده میشود. این نیرو در واقع همان وزن جرم m است که معمولاً با w نشان داده میشود.
توجه: از آن جا که جرم، یک کمیت نردهای (یا اسکالر) است، جهت ندارد. به هر حال، "g" منفی است، بنابراین، نیرویی که حاصل ضرب این دو مقدار است، در مورد حرکت پرتابی، منفی است. این نشانه منفی نشان میدهد که نیرو در جهت رو به پایین عمل میکند.
با بازگشت به مثالمان، وقتی توپ به داخل هوا پرتاب میشود و از تأثیر مقاومت هوا صرف نظر میکنیم، تنها نیرویی که بر روی آن اعمال می شود، نیروی گرانش است. همان طور که در بالا دیدیم، این نیرو در جهت نزولی عمل میکند، و در نتیجه وظیفه ممانعت از صعود توپ را بر عهده دارد. بنابراین، با توجه به این نکته، اجازه دهید مسیر توپ را در پرواز بررسی کنیم، که توسط نمودار شکل بالای این مقاله نشان داده شده است.
Vx سرعت در امتداد محور x است.
Vx0 سرعت اولیه در امتداد محور x است.
Vy سرعت در امتداد محور y است.
Vy0 سرعت اولیه در امتداد محور y است.
"g" شتاب ناشی از گرانش است.
't' زمان کل پرواز است.
وقتی توپ دست شما را ترک کرد، دو سرعت دارد، )Vy( در جهت عمودی و )Vx( در جهت افقی. مقدار اولیه Vx توسط Vx0 نشان داده شده است و مقدار اولیه Vy توسط Vy0 داده شده است. جمع برداری این دو سرعت توسط V0 داده شده است. زاویهای که تحت آن توپ پرتاب میشود با تتا نشان داده شده است.
تنها نیرویی که روی توپ کار میکند، نیروی جاذبه در جهت رو به پایین است. بنابراین، چون نیرویی برای مخالفت با آن وجود ندارد، Vx در طول پرواز ثابت خواهد ماند. اما، Vy ، دچار عقب ماندگی ناشی از ممانعت نیروی گرانش خواهد شد. شتاب تولید شده توسط یک نیرو به طور مستقیم با بزرگی نیرو متناسب است و در جهت همان نیرو است و به صورت معکوس با جرم جسم متناسب است. در لحظهای که توپ از دست شما خارج میشود، Vy مقدار خاصی را بر حسب نیرویی که توپ با آن پرتاب میشود خواهد داشت. با ادامه حرکت توپ به سمت بالا، هر ثانیه سرعت آن 8ر9 متر بر ثانیه کاهش مییابد، تا در یک نقطه این سرعت صفر شود، یعنی Vy = 0. این وقتی است که توپ به نقطه میانی منحنی مسیر خود میرسد.
از آن جا که سرعت صعودی اکنون صفر شده است، توپ متوقف میشود. با این حال، نیروی گرانشی همچنان بر روی توپ عمل میکند و بنابراین اکنون توپ با یک سرعت که هر ثانیه به اندازه 8ر9 متر بر ثانیه افزایش مییابد، شروع به سقوط می کند، تا زمانی که به زمین بیفتد یا گرفته شود. به این ترتیب در مییابیم که چرا یک توپ در حرکت پرتابی مسیری منحنی (که در واقع سهمی شکل است) را دنبال میکند.
منبع: Satyajeet Vispute – ساینس استراک