مفاهیمی از شیمی

يک تکه اسفنج را مي‌توان در فضاي کوچکتري متراکم کرد. علت تراکم اسفنج اين است که در آن سوراخهاي ريزي وجود دارد، وقتي اسفنج را فشار مي‌دهيم هواي داخل اين سوراخها خارج مي‌شود و ماده جامد اسفنج به هم نزديکتر مي‌گردد. درست مثل زماني که يک تکه اسفنج خيس را فشار مي‌دهيد؛ آب از سوراخهاي اسفنج خارج و اسفنج متراکم مي‌شود. "بويل"، دانشمند انگليسي در سال 1662 ميلادي مقداري جيوه – که فلزي مايع است- را در يک لوله شيشه‌اي پنچ متري ريخت. اين لوله خميده به
چهارشنبه، 5 فروردين 1388
تخمین زمان مطالعه:
موارد بیشتر برای شما
مفاهیمی از شیمی
مفاهیمی از شیمی
مفاهیمی از شیمی

نويسنده:فرزین نجفی پور




شیمی مولکولی

يک تکه اسفنج را مي‌توان در فضاي کوچکتري متراکم کرد. علت تراکم اسفنج اين است که در آن سوراخهاي ريزي وجود دارد، وقتي اسفنج را فشار مي‌دهيم هواي داخل اين سوراخها خارج مي‌شود و ماده جامد اسفنج به هم نزديکتر مي‌گردد. درست مثل زماني که يک تکه اسفنج خيس را فشار مي‌دهيد؛ آب از سوراخهاي اسفنج خارج و اسفنج متراکم مي‌شود. "بويل"، دانشمند انگليسي در سال 1662 ميلادي مقداري جيوه – که فلزي مايع است- را در يک لوله شيشه‌اي پنچ متري ريخت. اين لوله خميده به شکل حرف انگليسي U و يک سمت آن مسدود بود. بويل مشاده کرد که با افزودن جيوه هواي به دام افتاده در سمتي که بسته است، متراکم مي‌شود و فضاي کمتري اشغال مي‌کند. بويل نتيجه گرفت که هوا بايد از ذرات بسيار کوچک، يعني اتمهاي ريز، تشکيل شده باشد. ميان اتم‌ها فضايي است که در آن هيچ چيز نيست. وقتي هوا متراکم مي‌شود، اتم‌ها به هم نزديکتر مي‌شوند. بويل همان سال‌ها در کتابي نوشت: "عنصرها را بايد با آزمايش کشف کرد. شيميدانها بايد بکوشند تا هر چيزي را به مواد ساده‌تر تجزيه کنند، آن ماده يک عنصر است."
دانشمندان بر مبناي اين توصيه بويل، تا اواخر قرن هجدهم حدود 30 عنصر گوناگون کشف کردند و مواد مرکب زيادي را که از اين عناصر ساخته شده بود را بررسي کردند. بسياري از مواد مرکب بررسي شده تا آن زمان از مولکول‌هاي ساده ساخته شده بودند و هر کدام بيش از چند اتم نداشتند. کافي بود فهرستي از انواع گوناگون اتمها تهيه شده و گفته شود که در هر ماده مرکب از هر نوع اتم چند عدد وجود دارد. در سال 1824 ميلادي (1203 شمسي) "يوستون ليبينگ" و "فردريخ وهلر"، شيميدان آلماني درباره دوماده مرکب متفاوت تحقيق مي‌کردند. هريک از آنها براي ماده مرکب خود فرمولي بدست آورد و نشان داد که در آن چه عناصري و از هر عنصر چند اتم وجود دارد. وقتي آنها نتايج کار خود را اعلام کردند معلوم شد که هر دو ماده داراي فرمول يکساني هستند. با اينکه اين دو ماده با هم متفاوت بودند و از هر جهت خواص گوناگوني داشتند، مولکولهاي آنها از عناصر يکسان تشکيل شده و حتي عده اتمهاي هر عنصر در هر دو ماده يکسان بود. به اين ترتيب مشخص شد که تنها جمع کردنِ عده اتمهاي موجود در يک مولکول کافي نيست. و اين اتمها بايد آرايش ويژه‌‌‌اي داشته باشند. بنابراين، آرايش متفاوت سبب تفاوتِ مولکولها مي‌شود و خواص مواد با هم فرق خواهند داشت.
با توجه به اينکه هم مولکولها و هم اتمها به قدري کوچک هستند که ديده نمي‌شوند، شيميدانان چگونه مي توانند نوع آرايش اتم‌ها را در مولکولها بيابند؟
نخستين گام را در اين راه، "ادوارد فرانکلندِ" انگليسي برداشت. او مولکول‌هاي آلي را با برخي از فلزات ترکيب کرد و دريافت که اتمِ يک نوع فلزِ، هميشه با تعداد مشخصي از مولکول‌هاي آلي ترکيب مي‌شود. او نتيجه گرفت که هر اتم توانايي و ظرفيت خاصي براي ترکيب با عناصر ديگر دارد. او اسم اين خصلت را "والانس" گذاشت. "والانس" کلمه‌اي لاتين به معناي "ظرفيت" يا "توانايي" است. براي مثال وقتي مي‌گوييم:"ظرفيت هيدروژن «يک» است"، يعني اتم هيدروژن تنها با يک اتم ديگر مي‌تواند ترکيب شود. ظرفيت اکسيژن «دو»، نيتروژن «سه» و کربن «چهار» است.
اسکات کوپرِ اسکاتلندي، نيز در 1858 ميلادي نظريه "پيوندهاي شيميايي" را مطرح کرد. او معتقد بود که اتمها با "قلاب" يا "پيوند" به يکديگر متصل مي‌شوند و مولکولهاي مختلف را تشکيل مي‌دهند. طبق نظريه او، هر اتم به اندازه "ظرفيت" يا "والانس" خود مي‌تواند با اتمهاي ديگر پيوند بدهد. کوپر همچنين مدلی را برای نشان دادن ساختار مولکول ها پیشنهاد کرد .
استفاده از روش کوپر براي نشان دادن ساختمان مولکول‌هاي کوچک و غير آلي، به راحتي مقدور بود، اما در مورد مولکول‌هاي بزرگتر و مواد مرکب آلي، مشکلاتي وجود داشت که گاه باعث گمراهي مي‌شد. از اينرو "ککوله" تلاش کرد تا مشکل ظرفيت را در موردِ مواد مرکب آلي برطرف کند. "فردريش آگوست ککوله" با توجه به اين مسأله که هر اتم کربن ظرفيت اتصال به چهار اتم ديگر را دارد، توانست مسايل مربوط به تعداد زيادي از مولکول‌ها -که ساختمان آنها تا آن زمان معمّا به نظر مي‌رسيد- را حل کند.
امروزه نيز از همين مدل براي نشان دادن مولکولها و همچنين توضيح خواص آنها استفاده مي‌شود.
اما شيمي‌دانان ها چگونه مي‌توانند بين ساختار مولکول و خواص آن ارتباط برقرار کنند؟
مواد مختلف بسته به اين‌که از چه عناصر تشکيل شده‌اند و داراي چه آرايشي هستند، خواص مختلفي دارند. براي مثال موادي که خاصيت اسيدي از خود نشان مي‌دهند در ساختار مولکولي خود اتم هيدروژني دارند که به اکسيژن متصل است و آن اتم اکسيژن هم با يک عنصر نافلز مانند گوگرد، فسفر و... پيوند دارد. حال اگر به جاي اتم نافلز، يک اتم فلز مانند سديم، کلسيم يا ... قرار گيرد، ترکيب به جاي "خصلت اسيدي"، "خاصيت قليايي" خواهد داشت.
در داروها و مولکول‌هاي بزرگ، خواص ترکيب به عوامل متعددي بستگي دارد. در نانو فناوري که هدف ساختن مولکولي جديد با رفتاري خواص است، يک دانشمند شيمي مولکولي با استفاده از تخصص خود، آرايشي از اتم‌ها را پيشنهاد مي‌کند که خواصيت مورد نظر ما را داشته باشد. از سوي ديگر بايد بدانيم مولکولها صرفاً آنچه ما روي کاغذ رسم مي‌کنيم نيستند. مولکول‌ها داراي بعد هستند و فضا اشغال مي‌کنند.
يک مولکول در فضا آرايشهاي مختلفي را مي‌تواند اختيار کند. درحال حاضر با استفاده از يک سري فنون خاص و به کمک کامپيوتر مي‌توان آرايش‌هاي مختلف را پيش‌بيني کرده و چگونگي قرار گرفتن اتمها را در کنار يکديگر را بررسي کرد. همچنين مي توان حدس زد که هر آرايش مولکولي چه خواصي را موجب مي‌شود. اين کار نيز به واسطه اطلاعاتي که يک دانشمند شيمي مولکولي از مطالعه ساختارهاي مختلف مولکولها بدست آورده است، امکان پذير مي‌باشد.
شاخه‌اي از نانوفناوري که با بهره‌گيري از شيمي مولکولي و روشهاي محاسباتي فيزيکي و مکانيک کوانتومي، آرايشهاي متنوع مولکولها را بررسي مي‌کند را نانوفناوري محاسباتي مي‌نامند .

اتم اولیه

ریشه لغوی و تاریخچه

کلمه اتم از واژه یونانی Atomos به معنی (تقسیم‌نا‌پذیر) گرفته شده ‌است. اعتبار نخستین نظریه اتمی را بطور معمول از یونانیان باستان می‌دانند اما ممکن است خاستگاه این مفهوم در تمدنهای پیش از یونان باشد. نظریه اتمی (لوسیپوس) و (موکرتیس) که در قرن پنجم قبل از میلاد مسیح ‌می‌زیستند مدعی آن است که تقسیم پی‌درپی ماده در نهایت به اتمهایی می‌رسد که امکان تقسیم بیشتر ندارند.
ارسطو در قرن چهارم قبل از میلاد مسیح نظریه اتمی را نپذیرفت. او باور داشت که بطور فرضی ماده بی‌پایان به ذرات کوچک و کوچکتر تقسیم می‌شود. این نظریه دو هزار سال بصورت اندیشه محض باقی ماند. رابرت بویل در سال 1661 و ایزاک نیوتون در سال 1687 وجود اتمها را پذیرفتند.

تاریخچه شناسایی اتم

مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.
راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:
Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium
چاپ نمود.
براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم

اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم

در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها

اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.
اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

مدل های اتمی از ابتدا

مروری کوتاه برتاریخچه مدلهای اتمی از ٢٥٠٠سال پیش تا به حال
مطالعه روی عنصرها به حدود دو هزار پانصد سال پیش بر می گردد. زمانی که تالس فیلسوف یونانی آب راعنصر اصلی سازندهی جهان هستی می دانست . دویست سال پس از او ارسطو سه عنصر هوا و خاک و آتش را به عنصرپیشنهادی تالس افزود و این چهار عنصر را عنصرهای سازندهیکاینات تصورکرد . این دیدگاه تا دو هزارسال بعد نیز مورد مورد پذیرش بود تا این که در سال ١٦٦١میلادی رابرت بویل دانشمند انگلیسی با انتشار کتابی با عنوان شیمی دان شکاک مفهوم تازه ای از عنصر را معرفی کرد . وی دراین کتاب ضمن معرفی عنصر به عنوان ماده ای که نمی توان ان را به مواد ساده تر تبدیل کرد شیمی را علمی تجربی نامید و از دانشمندان خواست که افزون بر مشاهده کردن اندیشیدن و نتیجه گیری کردن که هر سه تنها ابزار یونانیان در مطالعهی طبیعت بود به پژوهش های علمی نیز اقدام کنند . توصیه های او مورد توجه قرار گرفت و در سال ١٨٠٣جان دالتون شیمی دان انگلیسی با نظریه یاتمی خود گام مهمی برای مطالعه ی ماده و ساختار آن برداشت .دالتون بااستفادهاز واژه ی یونانی اتم به معنای تجزیه نا پذیر است ذرهای سازنده ی عنصرها را توضیح داد . این ایده که همه ی مواد از ذره های کوچک و تجزیه ناپذیر ی به نام اتم ساخته شده اند نخستین بار ٢٥٠٠سال پیش توسط دموکریت فیلسوف یونانی مطرح شده بود اما دالتون با اجرای آزمایشهای بسیار ازنو به ان نتیجه گیری دست یافت . وی نظریه ی اتمی خود را در هفت بند به این ترتیب بیان کرد :١- ماده از ذرات تجزیه ناپذیری به نام اتم ساخته شده اند .٢- همه یاتمهای یک عنصر مشابه یک دیگرند .٣- اتم ها نه بوجود می ایند و نه از بین می روند .٤- همه ی اتمهای یک عنصر جرم یکسا ن و خواص شیمیایی مشابه ای دارند .٥- اتمهای عنصرهای مختلف به هم متصل میشوند و مولکولها رابه وجود می اورند .٦- در هر مولکول از یک ترکیب معین همواره نوع و تعدادنسبی اتمهای سازنده ی آن یکسان است.٧- واکنشهای شیمیایی شامل جابجایی اتمها یا تغییر در شیوه ی اتصال انها در مولکولهاست .در این واکنش اتم ها خود تغییری نمی کنند .الکترون نخستین ذره ی زیراتمی شناخته شدهپس از کشف الکتریسیته ی ساکن یا مالشی در آغاز قرن نوزدهم میلادی به این نکته پی برده شدکه بارهای الکتریکی مثبت یا منفی ایجاد شده به هنگام مالیدن یک جسم روی جسم دیگر از جایی نمی ایندو پیدایش آنها به خود ماده و شاید به اتمهای سازنده ی ان مربوط میشود.
.مایکل فارادی دانشمند معروف انگلیسی مشاهده کرد که به هنگام عبور جریان برق از میان محلول یک ترکیب شیمیایی فلزکار(برق کافت) یک واکنش شیمیایی در ان به وقوع می پیوندد .فیزیک دان ها رای توجیه این مطلب ذره ای بنیادی پیشنهاد کردند و ان را الکترون نامیدنداما درآ زمان به وجود رابطه میان اتم و الکترون پی برده نشد . و بعد از ان تا مسون با آزمایش هوشمندانه ای به نتایج جالبی دست یافت که به این شرح می باشند :١- پرتو های کاتدی (مانند نور) به خط راست حرکت میکنند . چون اگر در مسیر پرتو های کاتدییک جسم را قرار دهیم سایه ی ان جسم در انتهای لوله مشاهده می شود.٢- پرتو های اتدی به هنگام عبور گاز رقیق درون لوله را ملتهب می سازد . پر تو های کاتدیضمن عبور از لوله بخشی از انرژی خود را به اتمهای گازی داخل لوله منتقل میکنند و اتمهای گازیپرانرژی میشوند این اتمها ی گازی پرانرژی انرژی خود را بصو رت ور به ما پس می دهند .٣- پر تو های کاتدی دارای بار الکتریکی منفی هستند اگر در مسیر پرتو های کا تدییک میدانالکتریکی قرار دهیم پرتو های آندی سمت قطب مثبت منحرف میشوند بنابر این دارای بارالکتریکیمنفی هستند .همه ی مواد دارای الکترون هستند . جنس کاتد هر چه باشد پرتو ایی باخواص یکسان تولید میشودبنابراین پرتوهای کاتدی به نوع کاتد بستگی ندارد و این پرتوهاباید از چیزی ساخته شده باشند که در همه یمواد مشترک باشند این ذرات دارای بار منفی تامسون بعد ها الکترون نام گرفت .در حالی که تامسون مشغول مطالعه بر روی پرتوهای کاتدی بود کشف بسیار مهمی در فرانسهبه وقوع پیوست .در سال ١٨٩٦هانری بکرل فیزیکدانی که روی خاصیت فسفرسانس مواد شیمیایی کار می کردبه طور تصادفی با پدیده ی جالبی به قرار زیر مواجه شد :هانری با علا قه مندی کار پدرش را- که روی مواد فسفر سانس کار می کرد- دنبال می کرد . درآن زمان هانری با خواندن مقاله ای درمورد شیوه ی تولید پرتوهایxکه به تازگی توسط رونتگن کشف شده بود در این اندیشه فرو رفت که شاید مواد دارای خاصیت فلوئورسانس یا فسفرسانس نیز هنگام نور افشانی چنین پرتوی مرموزی را تابش میکنند . از این رو برآن شدکه ترکیب هایی برگزیند و در این باره به تحقیق بپردازد . او برای این کار بلورهای ماده ای را برای مدتی در برابر نور خورشید قرار می داد وبی درنگ در محیطی تاریک روی یک فیلم خام عکاسی میگذاشت که درون یک پاکت کاغذی تیره بود .پس از چند دقیقه فیلم را برداشته ظاهر میکرد و از روی میزان وضوح تصویر شدت تابش ان ماده را اندازه میگرفت .
روز چهار شنبه ٢٦فوریه ١٨٩٦هانری در ادامه ی آزمایش ها یش روی مواد فسفر سانس طبیعی ترکیبهای اورانیم دار پدرش دو قطعه از بلورهای یکی از این ترکیب ها را برداشت و همه ی وسایل کار خود را اماده کرد . اما از ان جا که هوای شهر پاریس کاملا ًابری بود از انجام ازمایش چشم پوشی کردو دو قطعه بلور را همراه با فیلم خام عکاسی در کشوی میز خود گذاشت و چند ساعتی به مطالعه پرداخت .عصر نیز زودتر از همیشه آزمایشگاه را به قصد خانه ترک کرد . وضعیت هوا چند روزی به همین منوال بود وتعطیلات اخرهفته نیز کار را بیشتر به تعویق انداخت .
بامداد روز دوشنبه اول مارس هنگامی که هانری به آزمایشگاه خود پانهاد یک باره به یادبلورهای درون کشوی میز خود افتاد . باعجله سراغ آنهارفت و تصمیم گرفت فیلم درون کشو را ظاهر کند .او با کنجکاوی فیلم را به تاریک خانه برد وان را در محلول ظهور عکس قرار داد . پس از چند دقیقه هیجان زده از تاریک خانه بیرون امد پشت میز کار خود نشست و عبارت زیر را نوشت : « دوشنبه اول مارس ساعت ٤٠/٩ نتیجه ی آزمایش روی نمونه ی شماره ی سیزده : با اینکه آزمایشهایم روی موادفسفر سانس نشان داده بود که همواره وضوح تصویر پس از چند ثانیه به شدت کاهش می یابد اما در این آزمایش برخلاف انتظارم پس از این مدت حضور در تاریکی ایجاد تصویری بااین وضوح شگفت انگیز به نظر می رسد . نمیدانم چرا؟ اما فکر می کنم که پدیده ی تازهای را کشف کرده ام . »هانری با مشاهده ی موضوع زیر نتیجه گرفت که پدیده ی تازه ای را کشف کرده است :هانری انتظار داشت اثرات بسیار کمی را بر فیلم عکاسی مشاهده کند اما در کمال تعجب اثراتبسیار شدیدی را مشاهده کرد بنابراین به این نتیجه رسید که این پرتوها مربوط به فسفر سانس نیست ضمنا ًاین پرتوها اشعه x نیز نبودند چون برای تولید اشعه ی x نیاز به پرتوی کاتدی داریمبنابراین هانری به این نتیجه رسید که پرتوهای جدیدی را کشف کرده است "

ساده‌ترین اتم

ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

نوترون

تاریخچه

از آنجا که اتمها از نظر الکتریکی خنثی هستند، تعداد الکترونها و پروتونها در هر اتم بایستی برابر باشند. برای توجیه جرم کل اتمها ، ارنست رادرفورد در 1920 وجود ذراتی بدون بار را در هسته اتم مسلم دانست. چون این ذرات بدون بارند، تشخیص و تعیین خواص آنها مشکل است.
ولی در 1932 جیمز چادویک نتیجه کارهای خود را درباره اثبات وجود این ذرات که نوترون (از واژه لاتین به معنای خنثی) نامیده می‌شوند، منتشر کرد. او توانست با استفاده از داده های بدست آمده از بعضی از واکنشهای هسته‌ای مولد نوترون ، جرم نوترون را محاسبه کند. چادویک با در نظر گرفتن جرم و انرژی تمامی ذراتی که در این واکنشها مصرف و تولید می‌شوند، جرم نوترون را محاسبه کرد. جرم نوترون 24-10×6749/1 g است که اندکی بیش از جرم پروتون (24-10×6726/1 گرم) می‌باشد.

معادله واکنش نوترونی

گسیل نوترون برای اولین بار در سال 1932 در ضمن بمباران بریلیم با ذرات ‏آشکار شد. درنتیجه گیراندازی ذره آلفا توسط هسته بریلیم ، هسته کربن ‏تشکیل و نوترون گسیل شد. بعدها شمار زیادی ‏واکنشهای هسته‌ای کشف شد که نوترون آزاد می‌کردند.

انواع نوترون‏

نوترونهای سرد
نوترونهای کند نوترونهای حرارتی
نوترونهای تند نوترونهای سریع
نوترونهای فوق سریع نوترونهای نسبیتی

چشمه تولید نوترون

برای بدست آوردن نوترون مثل سابق واکنش ذره آلفا با بریلیم معمول ‏است. حتی اکنون نیز آمپولهای محتوی آمیزه ای از ماده پرتوزای آلفا و گرد ‏بریلیم بعنوان چشمه تراکم نوترون بکار می‌رود. چنین چشمه نوترونی ‏را در نزدیکی اتاقک ابر ویلسون در حال کار قرار می‌دهیم که در آن لایه ‏نازکی از ماده محتوی هیدروژن مثلاً پارافین قراردارد.
روی عکسی که از این اتاقک گرفته شود، ردهایی مشاهده می‌شود که از ‏این لایه خارج می‌شوند. چنانکه می‌توان از روی جنس یونش پی برد که ‏اینها ردهای پروتون هستند. تمام ردها به طرف جلو هستند. آنها با پرتونهایی ‏ایجاد شده‌اند که بعلت برخورد نوترونهای تند گسیل شده از چشمه از ‏لایه خارج شده اند. خود نوترونها که از اتاقک می‌گذرند ردی ندارند.
بنابراین ، نوترونها یونش ‏قابل ملاحظه‌ای تولید نمی‌کنند، یعنی برخلاف ذرات باردار آنها با الکترونها ‏عملاً اندر کنش ندارند. نوترونها با گذر از میان ماده فقط با هسته های اتمی ‏اندرکنش می‌کنند. ولی نظر به اینکه اندازه هسته‌ها خیلی کوچک است، ‏برخورد نوترونها با آنها خیلی بندرت صورت می‌گیرد.

آشکارسازی باریکه نوترونی

برای اینکه نوترون یک ذره خنثی می‌باشد، از مکانیزمهای آشکارسازی ذرات باردار نمی‌توان برای آشکار سازی نوترون استفاده کرد. اخیرا دانشمندان بکمک آشکارسازهای کوانتومی ، تداخل سنجهای نوترونی ، اسپکترومتر جرمی کوانتومی ، برخوردهای ذرات بنیادی ، بمباران نوترونی مواد و نیز واکنشهای هسته‌ای از جمله واکنش زنجیری شکافت نوترونها را آشکارسازی نموده اند.

پروتون

مقدمه

اتم هیدروژن در واقع حالت مقید یک الکترون و یک پروتون است. هسته اتمی عناصر دیگر از پروتونها و نوترونهایی تشکیل می‌شود که با برهمکنشی قوی در قید یکدیگرند. پروتونهای آزاد را می‌توان هم در پرتوهای کیهانی یافت و هم با شتاب دهنده‌های ذرات تولید کرد. در آزمایشهای ویلهلم وین در سال 1898 و آزمایشهای متأخر جوزف تامسون در سال 1910، در میان ذرات یافت شده در جریانهای گازی یونیده ، ذره آلی با بار مثبت شناسایی شد که جرم آن تقریبا با جرم اتم هیدروژن بود.
در سال 1911 ارنست رادرفورد، در آزمایشهایی که در آنها که نیتروژن با ذرات آلفا بمباران می شد، دوباره با چنین ذرات باردار مثبتی روبرو شد و آنرا به عنوان هسته هیدروژن شناسایی کرد. تا سال 1920، او به این نتیجه رسیده بود که این ذره ، ذره بنیادی است و با توجه به این که واژه "protos" ، در زبان یونانی به معنی نخستین است، آنرا پروتون نامید تا موقعیت اولیه در خور اهمیت آن را در میان هسته‌های اتمی عناصر نشان دهد.

جرم پروتون

جرم پروتون برابر است با mp = 938.272 MeV/C2 = 1.6726X10-27 Kg جرم پروتون 1836 برابر جرم الکترون است. برای مشاهده واپاشی پروتون به ذرات سبکتر ، جستجوی تجربی فراوانی انجام شده ، ولی تا به حال نتیجه‌ای حاصل نشده است. مستقل از مد واپاشی ، حد پایین طول عمر میانگین پروتون ، τ ، را می توان حدود 1025 سال دانست. عمر میانگین پروتون در بعضی از مدهای واپاشی خاص به حد بالاتری می‌رسد، برای مثال در واپاشی p → e+ + π0 مقدار τ بزرگتر از 1032 سال است.

بار الکتریکی

بار الکتریکی پروتون مثبت است. این بار در مقایسه با بار الکترون مقداری مساوی و علامتی مخالف دارد. qp = -qe = -e شواهد تجربی نشان می‌دهد که ماده (از لحاظ بار الکتریبکی) خمثی است و در آن lim (|qp + qe|/e)<1021 است. حد گشت و در دو قطبی الکتریکی پروتون ، dp ، کمتر از 7-10 emf است (1fm = 10-15m) ، و میانگین مربعی شعاع بار پروتون که در آزمایشهای پراکندگی الکترون از پروتون بدست می‌آید، در حدود 0.72fm2 است. پروتون دارای تکانه زوایه ای h/2 ، پاریته مثبت و گشتاور مغناطیسی 2.792847µN است (µN مگنتون هسته‌ای است).
µN = eh/2mpc = 0.1050 efm = 3.152X10-14MeV/T-1
نوترون ذره‌ای است که ساختارش شباهتهای فراوانی به ساختار پروتون دارد. تشابه جرم پروتونم و نوترونها ، در کنار یکسان بودن تکانه زاویه‌ای (اسپین) هر ذره یکسانی تقریبی برهمکنشی قوی میان پروتونها و برهمکنش قوی میان نوترونها ، به معنی مفهوم ایزوسپین منجر می‌شود. پروتون و نوترون را مشترکا نوکلئون می‌نامند. نوکلئون به دسته ذراتی که باریون نامیده می‌شود تعلق دارد. باریون تکانه زاویه‌ای نیمه صحیح (با یکای h) دارد. نوکلئون سبکترین باریون است.

پاد پروتون (ضد پروتون)

پروتون پاد ذره‌ای به نام پاد پروتون دارد. پاد پروتون را اوئن چمبرلین ، امیلیو سگره ، کلاید ویگاند و توماس یسپسیلانتیس در سال 1955 میلادی ، با استفاده از بواترون در آزمایشگاه تابش برکلی ، کشف کردند. پس از مدت زمان کوتاهی ، پاد نوترون نیز با استفاده از همین بواترون کشف شد.

ترتیب در هسته اتم

هسته هر اتمی از پروتونها و نوترونها (یا نوکلئونها) تشکیل می‌شود. و این نوکلئونها از طریق برهمکنش قوی با یکدیگر پیوند دارند. ترکیب پروتونها و نوترونها در هر هسته معین بصورت A Z نشان داده نی شود که در آن ، A = Z+N است ، N و Z به ترتیب تعداد نوترونها و تعداد پروتونها است. تعداد پروتونها در هسته ، تعیین کننده تعداد الکترونهای اتم و در نتیجه تعیین کننده ویژگیهای اتمی (یا شیمیایی) است. در نمایش A Z ، علامت Z را اغلب با نماد شیمیایی اتم جایگزین می‌کنند.

ایزوتوپها

ایزوتوپها هسته‌هایی هستند که تعداد پروتونهای آنها باهم برابر ، ولی تعداد نوترونهایشان باهم متفاوت است. برای مثال ، ایزوتوپهای پایدار کلسیوم (Z = 20) عبارتند از: 48Ca ، 46Ca ، 44Ca ، 42Ca ، 40Ca. برای پایدارترین ایزوتوپهای عناصر سبک داریم : Z < N ، که این امر به دلیل قویتربودن برهمکنش پروتون - نوترون در مقایسه با برهمکنش پروتون - پروتون و نوترون - نوترون و همچنین به دلیل این است که انرژی جنبشی برای N = Z کمینه می‌شود. برای عناصر سنگینتر ، تأثیر دافعه کولنی بین پروتونها بطور نسبی مهمتر می‌شود و در نتیجه در پایدارترین ایزوتوپ داریم: N > Z.
خواص نوکلئونها در برقراری قوانین پایستگی و تعیین دقت آنها حائز اهمیت است. پایداری پروتون ، به مفهوم باریون منجر می‌شود. به نوکلئون و الکترون ، به ترتیب عددهای بار Bn = 1 و Bn = 0 نسبت می‌دهند. قاعده پایستگی عدد بار یونی ، همراه با این واقعیت که پروتون سبکترین باریون است، مانع از واپاشی پروتون می‌شود. با این همه نظریه وحدت بزرگ (GUT) پیش بینی می‌کند که بوزونهای پیمانه‌ای ابر سنگینی وجود دارند که در برهمکنش آنها ناپایستگی باریونها مجاز است، در نتیجه پروتون می‌تواند واپاشیده شود. حد تجربی طول عمر پروتون ، این مدلها را به شدت مقید می‌کند. برعکس الکترونها ، نوکلئونها ذرات بنیادی هستند.

کاربرد

برای مطالعه ساختار درونی پروتون و تولید ذرات جدید ، پروتون را تا انرژی حدود 106 Mev (معادل 1TeV) شتاب می‌دهند تا با الکترونها ، پروتونها یا هسته‌ها برخورد کند. پروتونهای شتابدار ، مستقیما از طریق نوترونهایی که در واکنشهای بعدی تولید می‌شوند. برای نابود کردن بافتهای سرطانی نیز مورد استفاده قرار می‌گیرند. پروتونها ، بخش اصلی پروتونهای کیهانی را تشکیل می‌دهند. پروتونهای با انرژی بسیار زیاد ، وقتی که وارد لایه بالایی جو می‌شوند، سرانجام در برخورد با هسته‌ها ، رگباری ذره‌ای پدید می‌آورند که چون به زمین می‌رسند بطور تجربی قابل آشکار سازی هستند.

هسته اتم

پرتوزایی طبیعی

بعضی از اتم‌ها مجموعه ناپایداری از ذرات بنیادی هستند. این اتم‌ها خود بخود پرتوهایی گسیل می‌دارند و به اتمهای دیگر با هویت شیمیایی متفاوت تبدیل می‌شوند. این فرایند که پرتوزایی نامیده می‌شود که در سال 1896 بوسیله هانری بکرل کشف شد. در سالهای بعد ارنست رادرفورد ماهیت سه نوع پرتو گسیل یافته از مواد پرتوزای موجود در طبیعت را توضیح داد. این سه نوع پرتو با سه حرف نخستین الفبای یونانی آلفا (α) ، بتا (β) و گاما (γ) مشخص می‌شوند.
تابش آلفا مرکب از ذراتی است که بار +2 و جرمی تقریبا برابر پروتون دارند. این ذرات آلفا با سرعتی حدود km/s 16000 از ماده پرتوزا بیرون می‌جهند. نخستین بار که ذرات α مورد مطالعه قرار گرفتند نوترون هنوز کشف نشده بود. امروزه ما می‌دانیم که ذره آلفا مرکب از دو پروتون و دو نوترون است.
تابش بتا مرکب از جریانی از الکترونهاست که تقریبا با سرعت km/s 130000 سیر می‌کنند.
تابش گاما اصولا صورتی از نور با انرژی بسیار زیاد است. پرتوهای گاما بدون بار و شبیه پرتوهای ایکس‌اند.

مدل اتمی رادرفورد

رادرفورد در سال 1911 نتایجی از آزمایشهای خود را که در آنها از ذرات آلفا برای پژوهش در ساختار اتم استفاده شده بود منتشر کرد. آزمایش از این قرار بود که باریکه‌ای از ذرات α به ورقه بسیار باریکی به ضخامت cm 0.0004 از طلا ، نقره یا مس تابانده شد. اکثر ذرات α بطور مستقیم از ورقه بیرون رفتند ولی بعضی از آنها از مسیر مستقیم منحرف شده و معدودی بطرف منبع خود بازگشتند. رادرفورد نتایج این آزمایشها را با طرح این فرض که هر اتم مرکب از دو بخش است توضیح داد:
یک هسته در مرکز اتم وجود دارد. بیشترین جرم و تمام بار مثبت اتم در هسته متمرکز است. اکنون باور ما این است که هسته شامل پروتونها و نوترونهایی است که بر روی هم جرم هسته را در بر دارند و بار هسته ناشی از پروتونهای هسته است.
الکترونها که بیشترین حجم اتم را اشغال می‌کنند خارج هسته هستند و به سرعت دور هسته حرکت می‌کنند. چون یک اتم از لحاظ الکتریکی خنثی است بار مثبت کل هسته (که ناشی از پروتونهای آن است) برابر بار منفی همه الکترونهای اتم است. بنابراین عده الکترونها با عده پروتونها برابر است.

اسپین الکترون

لکترون در اتم ، علاوه بر این که تحت تاثیر نیروی جاذبه هسته ، به دور آن می‌‌چرخد، دارای یک حرکت چرخشی به دور خود نیز می‌‌باشد. این نوع چرخش را اصطلاحا اسپین الکترون می‌‌گویند. «اسپین» واژه انگلیسی (Spin) است که به معنای چرخش می‌‌باشد.

مقدمه

می‌‌دانیم که کره زمین دارای دو نوع حرکت وضعی و انتقالی است. حرکت انتقالی آن به دور خورشید بوده و حرکت وضعی به دور خودش می‌‌باشد. هر یک از این دو نوع حرکت ، دارای اندازه حرکت زاویه‌ای مخصوص به خود هستند که در مورد حرکت انتقالی ، اندازه حرکت زاویه‌ای مداری و در مورد حرکت وضعی ، اندازه حرکت زاویه‌ای اسپینی می‌‌گویند، بدیهی است که اندازه حرکت زاویه‌ای کل برابر با مجموع این دو اندازه حرکت است.
اگر مدلی را در نظر بگیریم که زمین فقط یک نقطه مادی باشد، انتساب تکانه زاویه‌ای به آن بی‌معنی خواهد بود، اما در مدل دیگری که زمین را با ابعاد محدود در نظر می‌‌گیریم، وجود اندازه حرکت زاویه‌ای اسپینی نیز امکان پذیر است. لذا اگر این قضیه را در مورد مدل اتمی ‌بوهر بکار ببریم، با این فرض که الکترون یک بار نقطه‌ای نبوده، بلکه یک کره کوچک فرض شود، در این صورت الکترون علاوه بر اندازه حرکت زاویه‌ای مداری دارای اندازه حرکت زاویه‌ای اسپینی نیز خواهد بود.

تائید تجربی اسپین الکترون

از آن جا که کره مفروض باردار (یعنی الکترون) دارای حرکت است، لذا حرکت چرخشی آن معادل حلقه جریانی است که گشتاور مغناطیسی خاص خود را نیز دارد. اگر واقعا چنین گشتاور مغناطیسیی وجود داشته باشد، باید با میدان برهمکنش داشته و انرژی برهمکنشی نظیر این گشتاور مغناطیسی وجود داشته باشد. این اثرها غیر از برهمکنش گشتاور مغناطیسی مداری با میدان مغناطیسی خارجی است.
بنابراین باید جابجایی در ترازهای انرژی اتمها و نیز در طول موج خطوط طیفی که از اتمها گسیل می‌‌شود، ظاهر شود که مربوط به اسپین الکترون باشد. در طیف سنجهای دقیق چنین جابجائی‌هایی دیده شده‌اند. این نوع آزمایشها و نیز شواهد تجربی دیگر نشان می‌‌دهند که الکترون ، تکانه زاویه‌ای و گشتاور مغناطیسی دارد که به حرکت آن بر مدار پیرامون هسته مربوط نبوده، بلکه به ذات ذره مربوط است.

ویژگیهای اندازه حرکت زاویه‌ای اسپینی

تکانه زاویه‌ای یا اندازه حرکت زاویه‌ای اسپینی الکترون را با S نشان می‌‌دهند. مانند اندازه حرکت زاویه‌ای مداری ، این کمیت نیز کوانتیده است. بنابراین در میدان مغناطیسی ، S هر جهتی را اختیار نمی‌‌کند و فقط مجاز است در جهتهایی قرار گیرد که مولفه آن در امتداد میدان مغناطیسی (اگر میدان مغناطیسی در جهت z فرض شود) ، مضرب 2/1 از ћ باشد. یعنی:
تفاوت بارز مولفه S_z با مولفه z انداه حرکت زاویه‌ای مداری ، در این است که اندازه حرکت زاویه‌ای مداری برخلاف S_z مضرب صحیحی از ћ است.

اسپین الکترون در مکانیک کوانتومی

در مکانیک کوانتومی ‌که تابع موج جانشین مدارهای بوهر می‌‌شود، ارائه تصویری از چرخش الکترون غیر ممکن است. اگر توابع موج الکترون را مانند توده‌های ابری تصور کنیم که پیرامون هسته قرار گرفته‌اند، می‌‌توان تعداد بی‌شماری پیکان بسیار کوچک را در نظر مجسم کرد که در درون توده ابری پراکنده‌اند و همگی در یک راستا ، z+ یا z- ، امتداد دارند. البته آنچه گفته شد یک تصور خیالی است و امیدی به دیدن ساختار اتمی ‌وجود ندارد. چون ابعاد آن هزاران مرتبه از طول موجهای نور کوچکتر است. همچنین برهمکنش فوتونها با اتم ، ساختاری را که دیدن آن مورد نظر است، بشدت تغییر می‌‌دهد.
در هر حال ، مفهوم اسپین الکترون با آزمایشهای متعدد تجربی مورد تائید قرار گرفته است و در مکانیک کوانتومی ‌برای مشخص کردن عدد کوانتومی ‌جدید به نام عدد کوانتومی ‌اسپینی الکترون در نظر گرفته می‌‌شود. همان گونه که اشاره کردیم، این عدد کوانتومی ‌‌فقط می‌‌تواند مقادیر \pm 1/2 را به خود بگیرد.

ساختار ریز

شکافت تراز انرژی در اثر گشتاور مغناطیسی اسپین الکترون در نبود میدان خارجی را جفت شدگی اسپین مدار می‌‌نامند. چون اسپین الکترون با میدان مغناطیسی ناشی از اندازه حرکت زاویه‌ای مداری (حرکت الکترون پیرامون هسته) برهمکنش می‌‌کند. در مکانیک کوانتومی ‌با استفاده از حل معادله شرودینگر مقدار این شکافتگی را می‌‌توان تعیین نمود. شکافتگی‌هایی را که از این نوع برهمکنش مغناطیسی در خطوط طیف مربوط به اتمهای مختلف ایجاد می‌‌شوند، در مجموع ساختار ریز می‌‌گویند.
البته شکافتگی‌های به مراتب کوچکتر دیگری نیز وجود دارند که حاصل برهمکنش گشتاور مغناطیسی هسته با تکانه زاویه‌ای مداری و اسپین الکترون هستند و ساختار فوق ریز نام دارد.

الکترون خواهی

مقدار انرژی که در فرایند افزایش یک الکترون به یک اتم منفرد گازی شکل در حالت پایه مبادله می‌شود، اولین الکترون خواهی آن اتم می‌نامند
(A(g) + e- → A-(g
ارتباط الکترون خواهی با انرژی یونش الکترون خواهی یا آفینیته مربوط به فرآیندی است که در آن ، از اتم خنثی یک یون منفی (از طریق بدست آوردن الکترون) بوجود می‌آید. در حالیکه انرژی یونش مربوط به فرآیند تولید یک یون مثبت از اتم خنثی بسبب از دست دادن الکترون است.

علامت قراردادی الکترون خواهی

در فرآیند الکترون خواهی معمولا (ولی نه همیشه) انرژی آزاد می‌شود. اولین الکترون خواهی بیشتر عناصر ، علامت منفی دارد. بعنوان مثال ، الکترون خواهی فلوئور برابر است با 328Kj/mol- اولین الکترون خواهی و اما برای برخی عناصر مقدار آن مثبت است. مثلا برای نئون عبارت است از 29Kj/mol اولین الکترون خواهی. علامت مثبت برای الکترون خواهی نشانه آن است که برای تحمیل یک الکترون به اتم مربوط باید کار انجام شود، (یعنی سیستم انرژی جذب کند) تا اتم مورد نظر قادر به جذب الکترون اضافی شود.

علت آزاد شدن انرژی یا جذب انرژی توسط اتم در الکترون خواهی

الکترونی که به اتم خنثی نزدیک می‌شود، از سوی هسته مثبت اتم جذب می‌شود. اما از سوی الکترونهای منفی آن دفع می‌گردد. اگر جاذبه بیش از دافعه باشد، وقتی یون منفی بوجود می‌آید، انرژی آزاد می‌شود. برعکس اگر دافعه بیش از جاذبه باشد، برای تشکیل یون منفی باید به سیستم انرژی داده شود.

تغییرات الکترون خواهی در یک تناوب از جدول تناوبی

قاعدتا یک اتم کوچک باید تمایل بیشتری برای بدست آوردن الکترون از خود نشان دهد تا یک اتم بزرگ، زیرا الکترون افزوده شده به یک اتم کوچک ، بطور متوسط به هسته مثبت نزدیکتر خواهد بود. با توجه به اینکه شعاع اتمی عناصر از یک تناوب از چپ به راست کوچکتر و بار مثبت هسته در همان جهت افزایش می‌یابد، باید انتظار داشت که الکترون خواهی عناصر مربوط ، از چپ به راست در یک تناوب ، مقادیر منفی بیشتری نشان دهد.

موارد استثنایی

مواردی که عناصر از تعمیم بالا تبعیت نمی‌کنند، باید مورد توجه قرار گیرند. مثلا در دوره دوم مقدار الکترون خواهی بریلیوم (دارای پوسته فرعی 2s پر شده) ، نیتروژن (دارای پوسته فرعی 2p نیمه پر شده ) و نئون (با تمام پوسته‌های فرعی پر شده) از قاعده بالا پیروی نمی‌کنند. این عناصر ، آرایش الکترونی نسبتا پایدار دارند و به آسانی الکترون اضافی نمی‌پذیرند.
موارد استثنایی همانند را می‌توان در مورد عناصر مشابه به دوره‌های دیگر نیز مشاهده کرد. در هر دوره ، بیشترین تمایل پذیرش الکترون (الکترون خواهی بزرگتر با علامت منفی) در عنصر عضو گروه VIIIA دیده می‌شود. آرایش الکترونی همه اینها از آرایش گاز نجیب یک الکترون کم دارد.

تغییرات الکترون خواهی در یک گروه از جدول تناوبی

در این مورد ، برای تمام گروهها ، نمی‌توان الگوی واحد پیدا کرد. در مورد عناصر گروه VIIIA الکترون خواهی فلوئور ظاهراً غیر عادی است.حجم اتم فلوئور از بقیه عناصر گروه کوچکتر است و می‌توان انتظار داشت که بر اثر جذب الکترون ، بیشترین انرژی را آزاد کند. اما در حالی‌که الکترون افزوده شده به اتم کوچک بشدت توسط هسته ، جذب می‌شود. به همان ترتیب نیز از سوی بقیه الکترونهای موجود در اتم بشدت دفع می‌شود.
زیرا هرچه حجم کوچکتر باشد، چگالی بار الکترونهای والانس نیز بیشتر خواهد بود. اعتقاد بر این است که در اتم فلوئور این اثر دافعه اثر جاذبه قوی ناشی از کوچکی اتم را تا حدی خنثی می‌کند.

دومین الکترون خواهی

این فرآیند ، فرآیندی است که در آن یک الکترون به یک یون منفی افزوده می‌شود. برای نمونه در مورد اکسیژن برابر است با 845Kj/mol+ =دومین الکترون خواهی. از آنجا که یک یون منفی و یک الکترون یکدیگر را دفع می‌کنند، در فرآیند افزودن یک الکترون به یک یون منفی نه‌تنها انرژی آزاد نمی‌شود بلکه انجام فرآیند انرژی گیر است و دومین الکترون خواهی تمامی عناصر ، مقدار مثبت دارد.
انرژی تبادل شده در فرآیند تولید یون انرژی تبادل شده در فرآیند تولید یونی که دو یا چند بار منفی دارد، حاصل جمع جبری تمام الکترون خواهی مربوط است. این حاصل جمع برای تمام یونهای دارای چند بار منفی همیشه مثبت و فرآیند انرژی گیر است.

واکنش شیمیایی اتم‌ها

واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

پیوند میان اتم‌ها

اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

یون

هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

پیوند یونی

کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است.

مرز مابین انواع پیوندها

همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد.
بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد.

نظریه اتمی دالتون

جان دالتون نظریه اتمی را بگونه‌ای طرح کرد که شاخص برجسته‌ای در تاریخ شیمی شد. این نظریه در سالهای 1803 تا 1808 نصج گرفت. در آن زمان دانشمندان بسیاری معتقد بودند که ماده از اتم‌ها ترکیب یافته است اما دالتون از این هم پیش رفت. او طرحی برای نظریه اتمی بوجود آورد که می‌توانست قوانین تغییر شیمیایی را توضیح دهد و با نسبت دادن جرمهای نسبی به اتمهای عناصر گوناگون به مفهوم نظریه اتمی صورت کمی داد.

اصول موضوع نظریه دالتون

عناصر از ذرات بی‌نهایت کوچکی که اتم نامیده می‌شوند ترکیب یافته‌اند. تمام اتمهای یک عنصر یکسان و اتمهای عناصر گوناگون متفاوت‌اند.
در واکنشهای شیمیایی اتمها از هم جدا می‌شوند و به هم می‌پیوندند. در این واکنش هیچ اتمی ایجاد نمی‌شود یا از میان نمی‌رود و هیچ اتمی از یک عنصر به عنصر دیگر تبدیل نمی‌شود.
یک ماده مرکب شیمیایی حاصل ترکیب اتمهای دو یا چند عنصر است. یک ماده مرکب معین از اتمهایی ترکیب یافته است که همواره نوع و نسبت آنها ثابت است.
تغییرات در نظریه اتمی دالتون نظریه دالتون به مفهوم کلی آن امروزه نیز معتبر است. لیکن اصل اول آن تغییر یافته است. دالتون می‌گفت که تمام اتمهای یک عنصر معین ، جرم اتمی یکسان دارند. امروزه ما می‌دانیم که تمام اتمهای یک عنصر از لحاظ شیمیایی به هم شبیه و اتمهای یک عنصر با اتمهای عنصر دیگر تفاوت دارند. علاوه بر این ما می‌توانیم یک جرم متوسط برای اتمهای هر عنصر در نظر بگیریم. در بسیاری از محاسبات اگر عنصر را از یک نوع اتم با جرم متوسط بدانیم اشتباهی بوجود نمی‌آید.
منشا نظریه اتمی دالتون دالتون وجوه کمی نظریه خود را از درون دو قانون مربوط به تغییرات شیمیایی بیرون کشید:
قانون پایستاری جرم می‌گوید که در جریان یک واکنش شیمیایی جرم تغییر محسوسی نمی‌کند. اصل دوم نظریه دالتون این قانون را توضیح می‌دهد.
قانون نسبتهای معین می‌گوید که یک ماده مرکب خالص همواره شامل عناصر معینی است که با نسبت جرمی معین ترکیب می‌شوند. اصل سوم نظریه دالتون این قانون را توضیح می‌دهد.

الکترون

در نظریه دالتون و نظریه‌های یونانیان اتمها کوچکترین اجزای ممکن ماده بودند اما در اواخر سده نوزدهم کم کم معلوم شد که اتم خود از ذراتی کوچکتر ترکیب یافته است. این تغییر دیدگاه نتیجه آزمایشهایی بود که با الکتریسیته بعمل آمد. در سال 1807 و 1808 شیمیدان انگلیسی همفری دیوی با تجزیه مواد مرکب توسط الکتریسیته پنج عنصر پتاسیم ، سدیم ، کلسیم ، استرونسیم و باریم را کشف کرد. دیوی با این کار به این نتیجه رسید که عناصر با جاذبه‌هایی که ماهیتا الکتریکی هستند به هم متصل می‌شوند.
در سال 1832 و 1833 مایکل فارادی مجموعه آزمایشهای مهمی در زمینه برقکافت شیمیایی انجام داد. در فرایند برقکافت مواد مرکب بوسیله الکتریسیته تجزیه می‌شوند. فارادی رابطه بین مقدار الکتریسیته مصرف شده و مقدار ماده مرکب تجزیه شده را برسی کرد و فرمول قوانین برقکافت شیمیایی را بدست آورد. بر مبنای کار فارادی جرج جانسون استونی در سال 1874 به طرح این مطلب پرداخت که واحدهای باردار الکتریکی با اتم‌ها پیوستگی دارند. او در سال 1891 این واحدهای الکتریکی را الکترون نامید.
الکترونها در میدان مغناطیسی و الکتریکی منحرف می‌شوند. بعدها مقدار بار الکترون در سال 1909توسط رابرت . ا . میلیکان محاسبه شد. الکترون یک واحد بار منفی یعنی دارد. جرم الکترون نیز از رابطه q به q/m محاسبه شد و مقدار بدست آمد.

الکترونگاتیویته

الکترونگاتیویته Electronegativity میزان توانایی نسبی یک اتم در یک مولکول برای جذب جفت الکترون پیوندی بسوی خود است.

متداول‌ترین مقیاس الکترونگاتیویته

مقیاس نسبی الکترونگاتیوی پاولینگ ، متداول‌ترین مقیاس و مبتنی بر مقادیر تجربی انرژی‌های پیوندی است. مقدار انرژی اضافی که از جاذبه متقابل بارهای جزئی б+ و б- اضافه بر انرژی پیوند کووالانسی آزاد می‌شود، به قدر مطلق б و به تفاوت الکترونگاتیوی دو عنصر پیوند شده بستگی دارد. در محاسبات الکترونگاتیوی تنها تفاوت الکترونگاتیویته عناصر تعیین می‌شود. برای بنا کردن یک مقیاس ، به اتم F (الکترونگاتیوترین عنصر) بطور دلخواه عدد 4 نسبت داده شده است.
مقیاس الکترونگاتیوی پاولینگ ، متداول‌ترین مقیاس و مبتنی بر مقادیر تجربی انرژیهای پیوند است. مثلا انرژی پیوند Br-Br ، انرژی لازم برای تفکیک مولکول Br2 به اتمهای Br است. برای تفکیک یک مول از مولکولهای Br2 به اندازه 46+ کیلو کالری انرژی لازم است. انرژی پیوند H-H برابر 104+ کیلو کالری بر مول است.

تعاریف مختلف الکترونگاتیویته

الکترونگاتیویته ، در روشهای متفاوتی تعریف شده است که برخی از آنها به اختصار توضیح داده می‌شود.

الکترونگاتیویته پاولینگ

انرژی اضافی پیوند A-B نسبت به متوسط انرژی پیوندهای A-A و B-B می‌تواند به حضور سهم یونی در پیوند کوالانسی نسبت داده شود. اگر انرژی پیوند A-B بطور قابل ملاحظه ای از متوسط پیوندهای غیر قطبی A-A و B-B متفاوت باشد، می‌توان فرض کرد که سهم یونی در تابع موج و بنابراین اختلاف بزرگ در الکترونگاتیوی وجود دارد.

الکترونگاتیویته آلرد_روکر

در این تعریف ، الکترونگاتیویته توسط میدان الکتریکی بر سطح اتم مشخص می‌شود. بنابرین الکترون در یک اتم بار موثر هسته‌ای را احساس می‌کند. بر طبق این تعریف ، عناصری با الکترونگاتیویته بالا آنهایی هستند که با بار هسته‌ای موثر بزرگ و شعاع کوالانسی کوچک ، این عناصر در نزدیکی فلوئور قرار دارند.

الکترونگاتیویته مولیکن

مولیکن تعریف خود را بر پایه داده‌های طیف‌های اتمی نهاد. او فرض کرد که توزیع دوباره الکترون در طی تشکیل تر کیب به گونه‌ای است که در آن یک اتم به کاتیون (توسط ار دست دادن الکترون) و اتم دیگر به آنیون (توسط گرفتن الکترون) تبدیل می‌شود.
اگر یک اتم دارای انرژی یونیزاسیون بالا و الکترون‌خواهی بالا باشد، احتمالا در هنگام تشکیل پیوند ، الکترونها را به سوی خود می‌کشد. بنابراین بعنوان الکترونگاتیو شناخته می‌شود. از طرف دیگر اگر انرژی یونش و الکترون‌خواهی آن ، هر دو کوچک باشد تمایل دارد تا الکترون از دست بدهد. بنابراین به عنوان الکترو پوزیتیو طبقه بندی می‌شود.
این مشاهدات تعریف مولیکن را به عنوان مقدار متوسط انرژی یونش و الکترون‌خواهی عنصر معرفی می‌کند.

تغییرات الکترونگاتیویته عناصر

الکترونگاتیویته عناصر با افزایش تعداد الکترون‌های والانس و همچنین کاهش اندازه اتم افزایش می‌یابد و در هر دوره از جدول تناوبی از چپ به راست و در هر گروه از پایین به بالا افزایش می‌یابد. فلزات ، جاذبه کمی برای الکترون‌های والانس دارند و الکترونگاتیوی آنها حاکم است، ولی نافلزات ، به استثنای گازهای نجیب ، جاذبه قوی برای این‌گونه الکترون‌ها دارند و الکترونگاتیوی آنها زیاد است.
بطور کلی ، الکترونگاتیوی عناصر در هر دوره از چپ به راست (با افزایش تعداد الکترونهای والانس) و در هر گروه از پایین به بالا (با کاهش اندازه اتم) افزایش می‌یابد. بنابراین ، الکترونگاتیوترین عناصر ، در گوشه بالایی سمت راست جدول تناوبی (بدون در نظر گرفتن گازهای نجیب) و عناصری که کمترین الکترونگاتیوی را دارند، در گوشه پایینی سمت چپ این جدول قرار دارند. این سیر تغییرات ، با سیر تغییرات پتانسیل یونش و الکترون‌خواهی عناصر در جدول تناوبی هم‌جهت است.

مفهوم الکترونگاتیوی

مفهوم الکترونگاتیوی گرچه مفید است، ولی دقیق نیست. روشی ساده و مستقم برای اندازه گیری خاصیت الکترونگاتیویته وجود ندارد و روشهای گوناگون برای اندازه گیری آن پیشنهاد شده است. در واقع چون این خاصیت علاوه بر ساختمان اتم مورد نظر به تعداد و ماهیت اتمهای متصل به آن نیز بستگی دارد، الکترونگاتیوی یک اتم نامتغیر نیست.
انتظار می‌رود که الکترونگاتیوی فسفر در PCl3 با الکترونگاتیوی آن در PCl5 تفاوت داشته باشد. از اینرو ، این مفهوم را تنها بایستی نیمه‌کمی تلقی کرد. بنابراین می‌توان گفت که قطبی بودن مولکول HCl ناشی از اختلاف بین الکترونگاتیوی کلر و هیدروژن است چون کلر الکترونگاتیوتر از هیدروژن است، آن سر مولکول که به کلر منتهی می‌شود، سر منفی دو قطبی است.

توجیه پیوند یونی با خاصیت الکترونگاتیویته

پیوند یونی بین غیرفلزات وقتی تشکیل می‌شود که اختلاف الکترونگاتیوی آنها خیلی زیاد نباشد. در اینگونه موارد، اختلاف الکترونگاتیوی عناصر نشان دهنده میزان قطبی بودن پیوندهای کووالانسی است. اگر اختلاف الکترونگاتیوی صفر یا خیلی کوچک باشد، می‌توان گفت که پیوند اساسا غیر قطبی است و اتمهای مربوط ، سهم مساوی یا تقریبا مساوی در الکترونهای پیوند دارند.
هر چقدر اختلاف الکترونگاتیوی بیشتر باشد پیوند کووالانسی قطبی‌تر خوهد بود (پیوند در جهت اتم الکترونگاتیوتر قطبی می‌شود). بنابراین با توجه به مقادیر الکترونگاتیوی می‌توان پیشگویی کرد که HF قطبی‌ترین هیدروژن هالیدها است و انرژی پیوندی آن بیشتر از هر یک از این ترکیبات است. البته نوع پیوندی که بین دو فلز تشکیل می‌شود، پیوند فلزی و در آن اختلاف الکترونگاتیوی نسبتا کم است.

کاربردهای الکترونگاتیویته

می‌توان برای تعیین میزان واکنش پذیری فلزات و غیر فلزات بکار برد.
می‌توان برای پیش‌بینی خصلت پیوندهای یک ترکیب بکار برد. هرچه اختلاف الکترونگاتیوی دو عنصر بیشتر باشد، پیوند بین آنها قطبی‌تر خواهد بود. هرگاه اختلاف الکترونگاتیوی دو عنصر در حدود 1.7 باشد، خصلت یونی نسبی پیوند بیش از 50% است.
اگر اختلاف الکترونگاتیوی صفر و یا خیلی کوچک باشد، پیوند غیر قطبی است. هرچه اختلاف الکترونگاتیوی بیشتر باشد، پیوند کووالانسی قطبی‌تر خواهد بود. در این پیوندها ، اتمی که الکترونگاتیوی بیشتری دارد، بار منفی جزئی را خواهد داشت.
با استفاده از مقادیر الکترونگاتیوی می‌توان نوع پیوندی را که یک ترکیب ممکن است داشته باشد، پیش‌بینی کرد. وقتی دو عنصر با اختلاف الکترونگاتیوی زیاد با یکدیگر ترکیب می شوند، یک ترکیب یونی حاصل می‌شود. مثلا اختلاف الکترونگاتیوی سدیم و کلر 2.1 است و NaCl یک ترکیب یونی است.

آیا الکترونگاتیوی یک عنصر همیشه ثابت است؟

مفهوم الکترونگاتیوی غیر دقیق است. زیرا این خاصیت نه تنها به ساختمان اتم مورد بحث بستگی دارد، بلکه تعداد و ماهیت اتم‌های دیگری که به اتم مزبور پیوند داده شده‌اند نیز در آن دخالت دارد. بنابراین الکترونگاتیوی یک عنصر همیشه ثابت نیست مثلا الکترونگاتیوی فسفر در ترکیب (PCl3) متفاوت از الکترونگاتیوی آن در ترکیب (PCl5) است.

نيروي الكتريكي موثر هسته ومدارهاي اتم

نيروي الكتريكي موثر هسته، عبارت از نيروي الكتريكي است كه يك الكترون را به طرف هسته مي كشد. مثال اتم هيدروژن داراي يك پروتون و يك الكترون است. فرض كنيم نيروي الكتريكي كه از طرف هسته بر الكترون وارد مي شود برابر يك واحد باشد. اتم هليوم داراي دو پروتون و الكترون است. اما نيرويي الكتريكي كه بر هريك از الكترونهاي اتم هليوم وارد مي شود، برابر دو واحد نيست و نيروي الكتريكي موثري كه بر هر الكترون در اتم هليوم وارد مي شود تقريباً برابر 1.7 واحد است.

قاعده ي استالر : Staler's Rule

براي نخستين بار استالر روش ساده اي براي محاسبه نيروي الكتريكي موثر وارد به هر الكترون را ارائه داد. بنابر روش استالر نيروي الكتريكي هسته كه بر هر الكترون وارد مي شود، به اندازه ي S كاهش مي يابد و نيروي موثر هسته از رابطه ي زير به دست مي آيد.
Z*=Z-S.
كه در آن Z* , Z, S. به ترتيب نيروي الكتريكي موثر هسته، عدد اتمي و مقدار استالر ، يعني مقداري كه از نيروي الكتريكي واقعي كاهش مي يابد. با توجه به روش استالر نخست بايد توجه كرد كه الكترون در كداميك از مدارات اصلي يا فرعي كه بصوررت زير داده مي شود، قرار دارد:
(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)(5d)(5f)...
در اين روش الكترونهاي سمت راست روي نيروي الكتريكي هسته كه بر يك الكترون وارد مي شود، تاثيري ندارند فرض كنيم مي خواهيم نيروي الكتريكي موثر بر الكتروني را كه در مدار n قرار دارد حساب كنيم در هر گروه، هر الكترون به اندازه ي 0.35 واحد از مقدار نيروي الكتريكي كه از طرف هسته اعمال مي شود، مي كاهند. الكترونهاي گروه (s,p) n-1 به اندازه 0.85 واحد مي كاهند. الكترونهاي گروه n-2 به اندازه 1 واحد مي كاهند .
مثال: در اتم Sc كه شامل 21 پروتون است داريم:
S(4s) = 1 x (.35) + 9 x .85 + 10 x 1.0 = 18
So, Z*=21-18=3.
Example 2: As from a 3d perspective (Its nuclear has 33 protons);
S(3d)=20.3 and Z*=33-20.3=12.7
روش كلمنتي و رايموندي :Clementi and Raimondi
كلمنتي و رايموندي كار خود را روي نيروي الكتريكي موثر هسته در سال 1960 شروع كردند. در اين زمان اطلاعات زيادي در زمينه مدارات و مولكولها جمع آوري شده بود و كامپپوتر نيز اختراع شده بود كه در محاسبات بسيار مفيد بود. ايشان با استفاده از تابع موج روي اتمهاي مختلف از هيدروژن تا كريپتون كار كردند و يك روش رياضي براي محاسبه نيروي الكتريكي موثر هسته ارائه دادند. نتايج اين روش دقيق تر از روش استالر بود :

در روش كلمنتي

Atom : Sc,4s
Staler : Z*=3
Clementi : Z*=4.632
Atom : Sc,3d
Staler : Z*=12.7.
Clementi : Z*=17.378
توجه :
قاعده ي استالر و روش كلمنتي بر مبناي آزمايش استوار است و و هيچگونه توضيح نظري ندارد كه چرا بايستي نيروي الكتريكي هسته براي رسيدن به الكترون در اتمهايي كه بيش از يك الكترون دارند، كاهش يابد. اجازه بدهيد اين پديده را از ديدگاه نظريه سي. پي. اچ. بررسي كنيم. آيا نيرو تباه مي شود؟ اگر نيرو تباه نمي شود، پس چرا نيروي موثر هسته از يك مدار به مدار ديگر كاهش مي يابد؟ براي مقدار نيرويي كه كاهش مي يابد، چه اتفاقي مي افتد؟ آيا نيرو تبديل پذير است؟ نيرو به چه چيزي تبديل مي شود؟ هنگاميكه يك الكترون به طرف پروتون شتاب مي گيرد، انرژي الكترون افزايش مي يابد. سئوال اين است كه براي مقدار نيروي موجود در ميدان چه اتفاقي مي افتد؟ با توجه به نظريه سي. پي. اچ. نيرو و انرژي به يكديگر قابل تبديل هستند. اجازه بدهيد كاهش نيروي الكتريكي هسته را با استفاده از تبديل نيرو و انرژي به يكديگر توضيح دهيم.
كار كوانتومي است
در مورد قضيه كار انرژي W=DE برخوردي دوگانه وجود دارد. قسمت كار آن را با مكانيك كلاسيك مد نظر قرار مي دهند و كار را كميتي پيوسته در نظر مي گيرند، در حاليكه با انرژي آن برخوردي كوانتومي دارند. در واقع بايستي هر دو طرف رابطه را با ديد كوانتومي در نظر گرفت. در اين مورد مثالهاي زيادي مي توان ارائه داد كه با اين برخورد دوگانه در تناقض قرار خواهد گرفت. هنگاميكه يك فوتون در ميدان گرانشي سقوط مي كند، انرژي آن افزايش مي يابد. همچنانكه مي دانيم انرژي فوتون كوانتومي است، لذا كار انجام شده روي آن نيز بايد كوانتومي باشد. يك كوانتوم كار را بصورت زير تعريف مي كنيم:
Wq=FgLp
كه در آن Wq, Fg, Lp از چپ براست به ترتيب كوانتوم كار، كوانتوم نيروي گرانش و طول پلانك است. و در حالت كلي مقدار كار از رابطه ي زير به دست مي آيد :
W=nWq, n is an integer number. (n=...-2, -1, 0, 1, 2...)
با اين تعريف نيروي الكتريكي موثر هسته را بررسي مي كنيم.

نيروي الكتريكي موثر هسته

با توجه به نظريه سي. پي. اچ. هنگاميكه نيرو روي يك ذره/جسم كار انجام مي دهد، اگر كار مثبت باشد، نيرو به انرژي تبديل مي شود و اگر كار منفي باشد، در اين صورت انرژي به نيرو تبديل مي شود. فرض كنيم يك اتم با تعداد Z پروتون و نيروي الكتريكي هسته Fz و نيروي الكتريكي موثر *Fz را روي يك الكترون اعمال مي كند. در طي زمانيكه نيروي الكتريكي مي خواهد به الكترون مورد نظر برسد، روي ساير الكترونهايي كه در مسير يا اطراف آن وجود دارند، كار انجام مي دهد. بنابراين مقدار Fw به انرژي تبديل مي شود، يعني E=W و به اندازه Fw از مقدار Fz كاسته خواهد شد و داريم Fz*=Fz - Fw با توجه به مدار بندي زير:
(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)(5d)(5f)...
نيروي الكتريكي هسته براي رسيدن به الكترون مورد نظر، روي الكترونهاي سمت راست مدار بندي، هيچگونه كاري انجام نميدهد.

تعداد ذره ها در ماده

مقدار خالصی که شامل عدد آووگادرو ، واحد اصلی باشد، یک مول نامیده می‌شود که یک واحد اصلی است. مول مقدار ماده خالصی است که تعداد واحد‌های مستقل اصلی آن ، دقیقا برابر با تعداد اتم‌های ۱۲g کربن ۱۲۶C باشد. پس نمونه‌ای از یک عنصر که جرم آن بر حسب گرم از لحاظ عددی برابر با وزن اتمی آن عنصر باشد، شامل یک مول از اتمهای آن عنصر ، یعنی شامل عدد آووگادرو اتم است. مثلا وزن اتمی بریلیم ، ۹.۰۱۲۱۸است. بنابر این: اتم بریلیم Be=۱mol Be = ۶.۰۲۲۰۵x۱۰۲۳ : ۹.۰۱۲۱۸

اطلاعات اولیه

چون وزن اتمی فلوئور ۱۹.۰ و وزن اتمی هیدروژن ۱.۰ است، سنگینی یک اتم فلوئور ، ۱۹ برابر یک اتم هیدروژن خواهد بود. حال اگر ۱۰۰ اتم فلوئور و ۱۰۰ اتم هیدروژن را در نظر بگیریم، جرم مجموع اتم‌های فلوئور ۱۹ برابر جرم اتم‌های هیدروژن می‌شود. پس جرم‌های هر دو نمونه‌ای از فلوئور و هیدروژن که عمده اتم‌های آنها برابر باشد همان نسبت ۱۹.۰ به ۱.۰ یعنی نسبت وزنهای اتمی آنها ، خواهد بود.
اگر ۱۹.۰g فلوئور و ۱.۰g هیدروژن داشته باشیم، این دو مقدار بر حسب گرم و از لحاظ عددی برابر وزن‌های اتمی این دو عنصر است. چون جرم‌های این دو نمونه نسبت ۱۹.۰ به ۱.۰ دارد، نمونه‌ها باید شامل تعداد اتم‌های مساوی باشند. در واقع ، نمونه‌ای از هر عنصر که جرم آن بر حسب گرم عددی برابر با وزن اتمی آن عنصر باشد، شامل این عده اتم‌های یکسان خواهد بود.
این عدد را به افتخار "آمدو آووگادرو" ، عدد آووگادرو می‌نامند. آووگادرو نخستین کسی بود که رفتار گازها در واکنش شیمیایی را بر حسب عده مولکولها واکنش دهنده ، توضیح داد. مقدار عدد آووگادرو با آزمایش معین شده و تا شش رقم با معنی عبارت است از:
۶.۰۲۲۰۵x۱۰۲۳

مول ماده مولکولی

یک مول ، مرکب از عدد آووگادرو واحد مستقل است. یک مول ماده مولکولی مرکب از عدد آووگادرو مولکول و جرمی بر حسب گرم دارد که از لحاظ عددی برابر با وزن مولکولی آن ماده است. مثلا وزن مولکولی H۲O برابر ۱۸.۰۲ گرم است، پس مولکول H۲O با:
۱۸.۰۲g H۲O =۱MolH۲O =۶.۰۲۲۰۵xa۰۲۳ مولکول آب H۲O
چون یک مولکول آب ، دو اتم H و یک اتم O دارد، یک مول H۲O شامل دو اتم H و یک مول اتم O است. با استفاده از تعریف مول ، نوع واحد مستقلی که اندازه گیری می‌شود، باید مشخص باشد. یک مول از اتم‌های H شامل: ۶.۰۲۲۰۵x۱۰۲۳ اتم H و جرم آن ، تا سه رقم با معنی ، ۱.۰۱g است، یک مول از مولکولهای H۲ شامل ۶.۰۲۲۰۵xa۰۲۳ مولکول H۲ و جرم آن ۲.۰۲g است. برای فلوئور :
فلوئور گرم Mol F=۶.۰۲۲۰۵x۱۰۲۳ F=۱۹.۰
مولکول فلوئور ۱Mol F۲=۶.۰۲۲۰۵x۱۰۲۳ F۲=۳۸.۰g

مول در مواد یونی

وقتی می‌گوییم یک مول(BaCl۲) ، به این معنی است که نمونه مورد نظر ما شامل عدد آووگادرو واحد فرمولی است که واحد مستقل آن مشخص است. یک مول BaCl۲ جرمی برابر ۲۰۸.۳g دارد که همان وزن فرمولی BaCl۲ است. در واقع ، یک مول BaCl۲ شامل باریم:
green۱۳۷.۳g= یون ۱Mol
۲۰۸.۳g Bacl۲= واحد ۱Mol
BaCl۲=۶.۰۲۲۰۵x۱۰۲۳Cl۲

پیوند کووالانسی

یک جفت الکترون مشترک بین دو هسته یک پیوند کووالانسی تشکیل می‌دهند.
میلیون‌ها ماده مرکب شناخته شده فقط از غیر فلزات ترکیب یافته‌اند. این مواد مرکب فقط شامل عناصری هستند که در هر اتم 4 ، 5 ، 6 یا 7 الکترون والانس دارند. بنابراین الکترون‌های والانس اتم‌های غیر فلزی ، آنقدر زیاد است که اتم‌ها نمی‌توانند با از دست دادن آنها ساختار یک گاز نجیب را به دست آورند. معمولا غیر فلزات با جفت کردن الکترون‌ها پیوند ایجاد می‌کنند و در این فرآیند به ساختار یک گاز نجیب می‌رسند.

استحکام پیوند کووالانسی

آنچه اتم‌های یک ملکول را به هم نگه می‌دارد، پیوند کووالانسی است، در تشکیل پیوند کووالانسی الکترون‌ها ، به جای آنکه از اتمی به اتم دیگر منتقل شوند، میان دو اتم به اشتراک گذاشته می‌شوند. استحکام پیوند کووالانسی ناشی از جاذبه متقابل دو هسته مثبت و ابر منفی الکترون‌های پیوندی است. یا به عبارت دیگر مربوط به آن است که هر دو هسته الکترونهای مشترکی را جذب می‌کنند.

نحوه تشکیل اوربیتال مولکولی

دو اوربیتال به نحوی همپوشانی می‌کنند که ابرهای الکترونی ، در ناحیه بین دو هسته ، یکدیگر را تقویت می‌کنند و احتمال یافتن الکترون در این ناحیه افزایش می‌یابد طبق اصل طرد پاولی دو الکترون این پیوند باید اسپین مخالف داشته باشند. در نتیجه تشکیل پیوند اوربیتال‌های اتمی به اوربیتال مولکولی تبدیل می‌شود.

انواع پیوند کووالانسی

پیوند یگانه کووالانسی

متشکل از یک جفت الکترون (دارای اسپین مخالف) است که اوربیتالی از هر دو اتم پیوند شده را اشغال می‌کند. ساده‌ترین نمونه اشتراک در مولکول‌های دو اتمی گازهایی از قبیل F2 ، H2 و Cl2 دیده می‌شود. اتم هیدروژن فقط یک الکترون دارد هرگاه دو اتم هیدروژن تک الکترون‌های خود را به اشتراک بگذارند، یک جفت الکترون حاصل می‌شود.
این جفت الکترون پیوندی متعلق به کل مولکول هیدروژن است و به آرایش الکترونی پایدار گاز نجیب هلیم می‌رسد. هر الکترون هالوژن ، هفت الکترون والانس دارد. با تشکیل یک پیوند کووالانسی بین دو تا از این اتم‌ها ، هر اتم به آرایش الکترونی هشت تایی ، که ویژه گازهای نجیب است، می‌رسد.

پیوند چند گانه

بین دو اتم ، ممکن است بیش از یک پیوند کووالانسی تشکیل شود در این موارد گفته می‌شود که اتم‌ها با پیوند چند گانه به هم متصل‌اند. دو جفت الکترون مشترک را پیوند دو گانه و سه جفت الکترون مشترک را پیوند سه گانه می‌نامند. اغلب می‌توان تعداد پیوندهای جفت الکترونی را که یک اتم در یک مولکول بوجود می‌آورد از تعداد الکترون‌های مورد نیاز برای پر شدن پوسته والانس آن اتم ، پیش‌بینی کرد.
چون برای فلزات شماره گروه در جدول با تعداد الکترون‌های والانس برابر است، می‌توان پیش بینی کرد که عناصر گروه VIIA مثل Cl (با هفت الکترون والانس) ، برای رسیدن به هشت تای پایدار ، یک پیوند کووالانسی ، عناصر گروه VIA مثل O و S (با شش الکترون والانس) دو پیوند کووالانسی ، عناصر VA مثل N و P (با پنج الکترون والانس) سه پیوند کووالانسی و عناصر گروه IVA مثل C (با چهار الکترون والانس) چهار پیوند کووالانسی به وجود خواهند آورد.

نماد ساختار مولکول

در ساختار اول ، جفت الکترون مشترک با دو نقطه و ساختار دوم با یک خط کوتاه نشان داده شده است.
مانند :
H ― H H : H پیوند یگانه
:Ö=C=Ö: پیوند دو گانه
:N Ξ N: پیوند سه گانه
CΞC پیوند چهارگانه

جفت الکترون پیوندی

جفت الکترونی که در تشکیل پیوند کووالانسی بین دو اتم شرکت دارد و از به اشتراک گذاشتن الکترونهای دو اتم حاصل می‌شود، جفت الکترون پیوندی نامیده می‌شود.
نقطه‌ها ، جفت الکترونهای پیوندی را نشان می‌دهند.

انواع جفت الکترون

جفت الکترون ناپیوندی

جفت الکترون ناپیوندی ، جفت الکترونی است که در تشکیل پیوند کووالانسی شرکت ندارد و به شکل جفت الکترون تنها بر روی اتم قرار می‌گیرد و چون جفت الکترونهای ناپیوندی بیشتر تحت تاثیر یک هسته قرار می‌گیرند، تحرک بیشتری دارند و فضای بزرگتری اشغال می‌کنند. این جفت الکترونها در تشکیل پیوند هیدروژنی ، پیوند داتیو و تعیین شکل هندسی مولکول نقش اساسی دارند.

جفت الکترون پیوندی

آنچه اتم‌های یک مولکول را به هم متصل نگه می‌دارد، پیوند کووالانسی است. در تشکیل پیوند کووالانسی ، الکترون‌ها به جای آنکه از اتمی به اتم دیگر منتقل شوند، میان دو اتم به اشتراک گذاشته می‌شوند. بعبارتی ، تمایل دو اتم برای از دست دادن یا گرفتن الکترون کم و بیش مشابه است. به همین دلیل ، بین آنها پیوند اشتراکی صورت می‌گیرد. در نتیجه ، جفت الکترونی که از اشتراک دو اتم در تشکیل پیوند کووالانسی حاصل می‌شود، به جفت الکترون پیوندی معروف است.
استحکام پیوند کووالانسی ناشی از کشش متقابل دو هسته مثبت و ابر منفی جفت الکترون‌های پیوندی است یا به عبارت دیگر مربوط به آن است که هر دو هسته الکترون‌های مشترک را جذب می‌کنند.

نحوه تشکیل پیوند کووالانسی (جفت الکترونهای پیوندی)

برای ایجاد یک پیوند کووالانسی ، دو اتم بایستی به نحوی قرار گیرند که اوربیتال یکی از آنها قادر به همپوشانی با اوربیتال اتم دیگر باشد و هر اوربیتال باید دارای یک الکترون منفرد باشد. وقتی چنین شرایطی ایجاد شد، دو اوربیتال اتمی ، یک اوربیتال پیوندی منفرد را تشکیل می‌دهند که با هر دوا لکترون اشغال می‌شود.
دو الکترون مشترکی که یک اوربیتال پیوندی را اشغال می‌نمایند، بایستی دارای اسپین مخالف بوده ، یعنی بایستی زوج شده باشند. هر الکترون ، کل اوربیتال پیوندی را در اختیار دارد و بنابراین می‌توان فرض کرد که به هر دو هسته اتمی متعلق است. آن آرایش الکترونها و هسته‌ها ، حاوی انرژی کمتر یعنی پایدارتر از آرایش اتم‌های مجزا است. در نتیجه ، تشکیل پیوند با آزاد شدن انرژی همراه است.

پیش بینی تعداد جفت الکترون‌های پیوندی برای یک اتم

اغلب می‌توان تعداد پیوندهای جفت الکترونی را که یک اتم در یک مولکول بوجود می‌آورد، از تعداد الکترون‌های مورد نیاز برای پر شدن پوسته والانس آن اتم (قاعده هشت تایی یا اُکتت) ، پیش بینی کرد.
چون برای عناصر اصلی جدول تناوبی ، شماره گروه با تعداد الکترونهای والانس برابر است، می‌توان پیش بینی کرد که عناصر گروه هفت اصلی یعنی هالوژنها مثل کلر با هفت الکترون والانس برای رسیدن به هشت تایی پایدار یک پیوند کووالانسی ، عناصر گروه شش اصلی مثل S و O (با شش الکترون والانس) دو پیوند کووالانسی ، عناصر گروه پنج اصلی مثل P و N (با پنج الکترون والانس) سه پیوند کووالانسی و عناصر گروه چهار اصلی مثل C با چهار الکترون والانس چهار پیوند کووالانسی بوجود خواهند آورد.
هر اتم به تعداد الکترونهای جفت نشده خود پیوند کووالانسی تشکیل می‌دهد و اگر آرایش الکترونی عناصر گروه (8-3) اصلی جدول تناوبی را که می‌توانند در پیوند کووالانسی شرکت کنند در نظر بگیرید، متوجه خواهید شد که اوربیتال نیمه‌پُر به اندازه کافی ندارند و یا انتظار دارید که Be و B نتوانند پیوند کوالانسی تشکیل دهند. در حالیکه مولکولهای گازی BeCl2 با ساختار خطی و زاویه پیوندی 180 درجه و BCl3 با ساختار مثلثی و زاویه پیوندی 120 درجه وجود دارند که بیانگر این مطلب است که Be دارای دو اوربیتال تک الکترونی و B دارای سه اوربیتال تک الکترونی بوده و در پیوند کووالانسی با اتم کلر شرکت نموده‌اند.

برانگیخته شدن برای تولید الکترونهای منفرد

اگر در حالت اصلی ، اتمی اوربیتال نیمه‌پر کافی نداشته باشد، با استفاده از حالت برانگیخته (ارتقای الکترون) تعداد کافی اوربیتال نیمه پر پیدا می‌کند. حالت برانگیخته برای بسیاری از اتم‌ها برای تشکیل پیوند کووالانسی صورت می‌گیرد و این ارتقای الکترون ، باید از یک لایه فرعی دیگر (در همان لایه اصلی) باشد. مثلا از 2s به 2p یا از 3s به 3p یا به 3d.برای مثال ، اتم کربن در حالت اصلی (حالت پایه) 2 الکترون منفرد دارد، در صورتی که در ترکیب‌های مختلف ، کربن چهار ظرفیتی است، یعنی 4 الکترون با اتم دیگر به اشتراک می‌گذارد و 4 زوج الکترون مشترک تشکیل می‌دهد. بنابراین به صورت زیر برانگیخته می‌شود:
1s2 2s2 2p2(energy) →1s2 2s1 2p3
ارتقای الکترون در اتم کربن به صورت 2s1 2p2 به 406 کیلوژول انرژی نیاز دارد. در نتیجه ، اوربیتال هیبریدی sp3 (یک s وسه p) تشکیل می‌دهد.
مولکول IF3
در مولکول IF3 نیز اتم یُد باید 3 الکترون منفرد داشته باشد، بنابراین باید برانگیخته شود و یک الکترون از لایه 5p به لایه 5d انتقال یابد. لایه ظرفیت یا والانس اتم یُد بصورت 5s2 5p5 می‌باشد که درحالت برانگیخته بصورت 5s2 5p4 5d1 در می‌آید و در نتیجه سه الکترون منفرد حاصل می‌شود که با سه اتم فلوئور پیوند کووالانسی تشکیل می‌دهند.
مولکول BeCl2
اتم بریلیم دارای 2 الکترون جفت شده در اوربیتال 2s می‌باشد که یکی از الکترون‌ها در اثر برانگیخته شدن به اوبیتال 2p انتقال می‌یابد و دو اوربیتال هیبریدی sp حاصل می‌شود که با اتم‌های کلر پیوند کووالانسی بوجود می‌آورد.
مولکول BCl3
اتم بور (B) در حالت پایه دارای 2 الکترون در اوربیتال 2s و یک الکتون در اوبیتال 2p می‌باشد. برای تشکیل مولکول ، باید اتم B از حالت پایه 1s2 2s2 به حالت برانگیخته 1s2 2s1 2p2 تبدیل شود و در اثر هیبرید شدن اوربیتالها ، سه اوربیتال هیبریدی sp2 حاصل می‌شود که با اتم‌های کلر ، پیوند کووالانسی تشکیل می‌دهند.
خطوط ، جفت الکترونهای پیوندی را نشان می‌دهند.
دو اتم می‌توانند بیش از یک جفت الکترون به اشتراک بگذارند
از آن جا که کربن در بیرونی‌ترین لایه الکترونی خود چهار الکترون ظرفیت دارد، با رعایت قاعده هشت تایی ، حداکثر می‌تواند با چهار اتم ، پیوند تشکیل دهد. در مولکول اتان ، C2H6 ، هر اتم کربن به یک کربن و سه اتم هیدروژن متصل است. بین هر اتم هیدروژن و کربن و همچنین بین دو اتم کربن ، یک جفت الکترون مشترک وجود دارد. اما در مولکول اتن ، C2H4 ، بین دو اتم کربن دو جفت الکترون مشترک وجود دارد.
افزون بر کربن ، عنصرهای دیگر از جمله نیتروژن ، اکسیژن و گاهی گوگرد نیز می‌توانند با اتم‌های دیگر ، با رعایت قاعده هشت‌تایی ، بیش از یک جفت الکترون به اشتراک بگذارند. اگر بین دو اتم به جای یک جفت الکترون ، دو جفت الکترون به اشتراک گذاشته شود، یک پیوند کووالانسی دو گانه یا پیوند دوگانه تشکیل می‌شود و همچنین اگر بین دو اتم به جای یک جفت الکترون ، سه جفت الکترون به اشتراک گذاشته شود، پیوند سه گانه تشکیل می‌شود. مانند مولکول نیتروژن ( N3 ) که در آن بین دو اتم نیتروژن ، سه جفت الکترون پیوندی وجود دارد.
منبع: http://www.academist.ir/




نظرات کاربران
ارسال نظر
با تشکر، نظر شما پس از بررسی و تایید در سایت قرار خواهد گرفت.
متاسفانه در برقراری ارتباط خطایی رخ داده. لطفاً دوباره تلاش کنید.
موارد بیشتر برای شما
حکمت | خیلی نگران تربیت بچه‌هام هستم / استاد مومنی
music_note
حکمت | خیلی نگران تربیت بچه‌هام هستم / استاد مومنی
حکمت | زیان‌کارترین انسان ها چه کسانی هستند  / استاد توکلی
music_note
حکمت | زیان‌کارترین انسان ها چه کسانی هستند / استاد توکلی
محل عجیب اختفای مهاجران غیرقانونی برای ورود به ترکیه!
play_arrow
محل عجیب اختفای مهاجران غیرقانونی برای ورود به ترکیه!
حضور مستربین در کلیپ جالب باشگاه اسپارتاپراگ پس از صعود به لیگ قهرمانان اروپا
play_arrow
حضور مستربین در کلیپ جالب باشگاه اسپارتاپراگ پس از صعود به لیگ قهرمانان اروپا
ویدیویی تاثیرگذار از یک نصحت درست!
play_arrow
ویدیویی تاثیرگذار از یک نصحت درست!
زنده شدن ماهی منجمد پس از بیرون آوردن از یخ
play_arrow
زنده شدن ماهی منجمد پس از بیرون آوردن از یخ
افشاگری جدید مارک زاکربرگ
play_arrow
افشاگری جدید مارک زاکربرگ
مصاحبه خنده‌دار ایرج نوذری در صندلی داغ با پسرش منوچهر نوذری
play_arrow
مصاحبه خنده‌دار ایرج نوذری در صندلی داغ با پسرش منوچهر نوذری
اشک‌های خواهرانه پای تشک کشتی
play_arrow
اشک‌های خواهرانه پای تشک کشتی
ادامه جست‌وجوها برای پیدا کردن کوهنورد مفقود شده در دماوند
play_arrow
ادامه جست‌وجوها برای پیدا کردن کوهنورد مفقود شده در دماوند
بازداشت مزاحمین نوامیس در جوپار کرمان
play_arrow
بازداشت مزاحمین نوامیس در جوپار کرمان
مرگ فوتبالیست اروگوئه‌ای بعد از بیهوشی در حین بازی
play_arrow
مرگ فوتبالیست اروگوئه‌ای بعد از بیهوشی در حین بازی
توصیه‌های اخلاقی رهبر انقلاب به اعضای هیئت دولت چهاردهم
play_arrow
توصیه‌های اخلاقی رهبر انقلاب به اعضای هیئت دولت چهاردهم
رئیس عدلیه: برای پیشرفت و رفع مشکلات در کنار دولت هستیم
play_arrow
رئیس عدلیه: برای پیشرفت و رفع مشکلات در کنار دولت هستیم
کمبود عناصر غذایی در گیاهان، دلائل و راه حل‌ها
کمبود عناصر غذایی در گیاهان، دلائل و راه حل‌ها