سه گزاره بدیهی که نیازمند برهانند

در ریاضیات پیشرفته ممکن است برخی از گزاره ها از سوی مخاطبان چنان بدیهی به نظر برسند که نیازی برای ارائه برهان برای آنها احساس نشود. در مقابله با چنین قضایایی مردم ممکن است سؤال کنند که اگر نتوان این قضیه...
سه‌شنبه، 28 بهمن 1393
تخمین زمان مطالعه:
موارد بیشتر برای شما
سه گزاره بدیهی که نیازمند برهانند
سه گزاره بدیهی که نیازمند برهانند

 

نویسنده: تیموتی گاورز
مترجم: پوریا ناظمی





 

در ریاضیات پیشرفته ممکن است برخی از گزاره ها از سوی مخاطبان چنان بدیهی به نظر برسند که نیازی برای ارائه برهان برای آنها احساس نشود. در مقابله با چنین قضایایی مردم ممکن است سؤال کنند که اگر نتوان این قضیه را بدیهی فرض کرد پس چه چیز دیگری را ممکن است بتوان بدیهی خواند؟ یکی از همکاران سابق من پاسخ خوبی به این پرسش می داد. او معتقد بود یک قضیه تنها زمانی بدیهی است که برهان آن بلافاصله در ذهن شما جرقه بزند و آشکار شود. در ادامه من 3 مثال از این موارد را که ممکن است به نظر بدیهی برسند اما نیازمند برهانند را مورد بحث قرار می دهم.
1. قضیه بنیادی حساب بیان می کند که هر عدد طبیعی را می توان به شکلی یکتا و منحصر به فرد به شکل حاصل ضربی از اعداد طبیعی اول نوشت ( فارغ از جهتی که ضریب ها نوشته می شوند ). برای مثال 36=3×3×2×2, 74=37×2 و 101 خود به تنهایی عددی اول است و می توان آن را حاصل ضرب عددی اول در 1 نوشت. نگاهی به اعداد کوچکی مانند این ها، شاید باعث شود تا شخصی به سرعت نسبت به یکتایی این حاصل ضرب ها قانع شود. این مسأله بخش اصلی این قضیه را تشکیل می دهد و به نظر نمی رسد نیازمند ارایه برهان باشد.
اما آیا این نکته واقعاً بدیهی و آشکار است؟ اعداد 7، 13، 19، 37 و 47 همگی اول هستند. بنابراین اگر قضیه بنیادی حساب بدیهی باشد آنگاه می توان با همان بدیهیت گفت که 19×13×7 با 47×37 برابر نخواهد بود. در واقع هر کسی می تواند با بررسی کردن این حاصل ضرب به شما اطمینان دهد که حاصل ضرب آنها واقعاً متفاوت است. اما این مسأله نشان نمی دهد که حاصل ضرب های دو مجموعه اول بالا الزاماً و آشکارا متفاوت هستند و از آن گذشته نشان نمی دهد که نمی توان هیچ 2 عدد اول دیگری یافت که حاصل ضرب آنها به همین نتیجه نرسد. در حقیقت، هیچ راه ساده ای برای اثبات این نظریه وجود ندارد و اگر برهان این قضیه بلافاصله در ذهن شما جرقه زده باشد، باید گفت شما از ذهنی بسیار غیر عادی برخوردارید.
2. فرض کنید روی یک قطعه طناب یک گره خفت (1) زده و سپس دو انتهای آزاد طناب را به هم وصل کرده اید تا شکلی مانند شکل 1 ایجاد شود. از نظر ریاضیاتی این گره را گره شبدری می نامند. سؤال این جا است که آیا می توان این گره را بدون بریدن طناب باز کرد؟ نه مسلم است که نمی شود.
اما چرا ما به این راحتی آماده گفتن جمله « مسلم است که نمی شود » هستیم؟ آیا هیچ استدلالی به طور فی البداهه در ذهن ما شکل گرفته است؟ شاید این ایده از اینجا آمده باشد که به نظر می رسد هر کوششی برای باز کردن این گره به جای آنکه منجر به باز شدن آن شود بیشتر منجر به افزایش پیچیدگی می شود. اما تبدیل این حس غریزی به برهانی قابل قبول دشوار به نظر می رسد. تنها چیزی که در این باره بدیهی است آن است که هیچ راه ساده ای برای انجام این کار وجود ندارد. مسأله ای که اثباتش دشوار است این است که نشان دهیم هیچ احتمالی برای باز کردن گره شبدری، با استفاده از روشی که در ابتدا به پیچیده تر شدن وضعیت گره بیانجامد، وجود ندارد. مسلماً این فرض ( حل کردن مسأله یا باز کردن گره با اضافه کردن مقداری پیچیدگی به آن ) به نظر غیر ملموس می آید. اما چنین پدیده هایی در ریاضیات و حتی زندگی روزمره ما نیز بارها رخ می دهند. مثلاً ممکن است برای آنکه اثاثیه اتاق خود را مرتب کنید، شاید مجبور شوید در ابتدا شلوغی بیشتری از وضع اولیه را در آن به وجود آورید و با جابه جا کردن اسباب ها و افزایش آشفتگی آن کم کم به وضعیت مرتب نهایی مورد نظر برسید.
سه گزاره بدیهی که نیازمند برهانند
تصویر شماره 1: یک گره خفت
3. یک منحنی (2) مسطح شامل هر شکلی می شود که شما آن را بدون برداشتن نوک قلم از روی صفحه رسم کرده اید. این منحنی را ساده می نامند؛ اگر خود را قطع نکرده باشد و اگر نقطه انتهای منحنی بر نقطه آغاز آن منطبق شود آن را بسته می خوانند. شکل 2 نمایی تصویری از این تعریف را نشان می دهد. نخستین طرح رسم شده، منحنی بسته و ساده ای است که بخشی از صفحه را محدود نموده است. این بخش را داخل منحنی می نامند. بدیهی است که هر منحنی ساده ی بسته ای صفحه را به دو بخش داخلی و خارجی تقسیم می کند ( البته اگر خود منحنی را هم یک بخش حساب کنید، صفحه به 3 بخش داخل، خارج و روی منحنی تقسیم می شود ).
آیا این سخن واقعاً بدیهی است؟ بله. البته به شرطی که منحنی شما چندان پیچیده نباشد. اما درباره منحنی نشان داده شده در شکل 3 چه می توان گفت؟ اگر شما نقطه ای را در نزدیکی مرکز منحنی انتخاب کنید، چندان بدیهی به نظر نخواهد رسید که آیا آن نقطه درون منحنی است یا بیرون آن. شاید شما بگویید، درست است که نمی توان با یک نگاه مشخص کرد که این نقطه درون یا بیرون منحنی است اما به هر حال این نقطه فارغ از توان تشخیص من، حتماً یا بیرون منحنی است یا درون آن.
چرا باید کسی این استدلال را تصدیق کند. شاید کسی بخواهد این مسأله را به روش زیر تحقیق کند. یک لحظه فرض کنید مفهوم دقیق و منطقی درون و بیرون منحنی را می شناسیم. در این صورت هر بار که ما از مرز منحنی عبور می کنیم، پس یا از داخل منحنی به خارج آن رفته ایم و یا برعکس، از خارج وارد داخل آن شده ایم. بنابراین اگر بخواهید نشان دهید که یک نقطه، مانند p داخل یا خارج منحنی است، تنها کاری که باید انجام دهید این است که نقطه ای مانند Q در جایی دور از منحنی که آشکارا بیرون آن است در نظر بگیرید و از p خطی تا Q رسم کنید. بنابر آنچه گفته شد اگر تعداد نقاط تقاطع این خط با منحنی عددی فرد بود، آنگاه نقطه P به شکلی بدیهی داخل منحنی است و در غیر این صورت در خارج آن.
سه گزاره بدیهی که نیازمند برهانند
تصویر شماره 2: چهار نوع از منحنی
مشکل این استدلال در اینجا است که شما باید خیلی از چیزها را مسلم فرض کنید. برای مثال از کجا معلوم که اگر خط دیگری از P رسم کنید و آن را به نقطه ای مانند R که آن هم بیرون از منحنی است برسانید، آنگاه نقاط تقاطع به دست آمده، شما را به نتیجه دیگری از حالت اول نرساند؟ ( البته این اتفاق نمی افتد اما به هر حال باید آن را ثابت کنید ). این مسأله که هر منحنی ساده بسته صفحه را به دو بخش داخلی و خارجی تقسیم می کند در حقیقت یکی از قضایای معروف ریاضیاتی است که به نام قضیه منحنی جردن (3) معروف است و اگر چه بدیهی به نظر می رسد نیازمند ارائه برهان است و همه برهان های موجود برای این قضیه به حدی دشوار هستند که از حوصله چنین کتابی خارج است.
سه گزاره بدیهی که نیازمند برهانند
تصویر شماره 3: آیا نقطه سیاه درون منحنی است یا بیرون آن؟

پي‌نوشت‌ها:

1. Slip Knot
2. Curve
3. Jordan Curve Theorem

منبع مقاله :
گاورز، تیموتی؛ ( 1391 )، ریاضیات، پوریا ناظمی، تهران: بصيرت، چاپ دوم.



 

 



ارسال نظر
با تشکر، نظر شما پس از بررسی و تایید در سایت قرار خواهد گرفت.
متاسفانه در برقراری ارتباط خطایی رخ داده. لطفاً دوباره تلاش کنید.
مقالات مرتبط