براساس مدل سازی هوش مصنوعی، میزان مرگ و میر COVID-19 تا جمعه آینده به 3900 نفر می‌رسد

از مدلی از پیش بینی مبتنی بر هوش مصنوعی استفاده می‌شود تا در مورد میزان ابتلا به کرونا ویروس و مرگ و میر ناشی از آن پیش بینی‌هایی با دقت قابل قبول صورت گیرد.
سه‌شنبه، 20 اسفند 1398
تخمین زمان مطالعه:
موارد بیشتر برای شما
براساس مدل سازی هوش مصنوعی، میزان مرگ و میر COVID-19 تا جمعه آینده به 3900 نفر می‌رسد
بیماری کرونا ویروس COVID-19 تا کنون منجر به مرگ 3،380 نفر شده است، حدود 98300 نفر را آلوده کرده است و در بسیاری از کشورها به طور قابل توجهی بر اقتصاد آنها تأثیر گذاشته است.
 
ما از آنالیزهای پیش بینی کننده، شاخه‌ای از هوش مصنوعی (AI)، استفاده کرده‌ایم تا پیش بینی کنیم که تعداد موارد تأیید شده ابتلا و مرگ و میر ناشی از COVID-19 که در آینده نزدیک قابل پیش بینی است چقدر است. (آنالیزهای پیش بینی کننده دسته‌ای از تجزیه و تحلیل دادهها با هدف ایجاد پیش بینی در مورد نتایج آینده بر اساس داده‌های تاریخی و تکنیک‌های تجزیه و تحلیل مانند مدل سازی آماری و یادگیری ماشین است. برای تدوین طرح‌های احتمالی و مواجهه امیدوارانه با بدترین اثرات کرونا ویروس، دولت ها باید بتوانند روند آینده شیوع را پیش بینی کنند. علم تجزیه و تحلیل پیش بینی می‌تواند بینش‌های آینده را با درجه قابل توجهی از دقت ایجاد کند. با کمک ابزارها و مدلهای پیشرفته تحلیلی پیش بینی، هر سازمان می‌تواند از داده‌های گذشته و فعلی برای پیش بینی قابل اعتماد روندها و رفتارهای میلی ثانیه، روزها یا سالهای آینده استفاده کند.)
 
روش ما پیش بینی می‌کند که براساس داده‌های موجود تا 5 مارس، تا 13 مارس، تعداد مرگ و میر ناشی از این ویروس به 3 هزار و 913 نفر خواهد رسید و موارد تأیید شده ابتلا به 116.250 در سراسر جهان خواهد رسید.
 براساس مدل سازی هوش مصنوعی، میزان مرگ و میر COVID-19 تا جمعه آینده به 3900 نفر می‌رسد
 
شرح تصویر: موارد پیش بینی شده (سبز) و تایید شده (آبی) ابتلا به COVID-19  از 23 فوریه تا 13 مارس، مطابق با شبیه سازی ما. (توجه: مقیاس بر حسب ده هزار نفر است. از طرف نویسنده ارائه شده است (بدون حق استفاده مجدد).
 براساس مدل سازی هوش مصنوعی، میزان مرگ و میر COVID-19 تا جمعه آینده به 3900 نفر می‌رسد
 
شرح تصویر : موارد پیش بینی شده (بنفش) و تایید شده (قرمز) مرگ و میر ناشی از COVID-19  از 23 فوریه تا 13 مارس، مطابق با شبیه سازی ما. (توجه: مقیاس بر حسب هزار نفر است، بنا بر این این عددها به اندازه یک مرتبه بزرگی کوچکتر از اعداد در نمودار قبل هستند. از طرف نویسنده ارائه شده است (بدون حق استفاده مجدد).
 
برای تدوین طرح‌های احتمالی و مواجهه امیدوارانه با بدترین اثرات کرونا ویروس، دولت ها باید بتوانند روند آینده شیوع را پیش بینی کنند.
 
اینجاست که تجزیه و تحلیل پیش بینی می‌تواند ارزشمند باشد. این روش شامل یافتن روند در داده‌های گذشته و استفاده از این بینش‌ها برای پیش بینی وقایع آینده است. در حال حاضر موارد استرالیا برای تولید چنین پیش بینی‌ای برای این کشور بسیار اندک است.
 

خرد کردن عدد

از زمان انتشار این مقاله تاکنون، مدل ما ابتلا به عفونت COVID-19 را با دقت 96٪ و مرگ و میرها را با دقت 99٪ پیش بینی کرده بوده است. برای حفظ این دقت، ما باید به طور مرتب داده‌های خود را به روز کنیم زیرا نرخ جهانی انتشار COVID-19  افزایش یا کاهش می‌یابد. مهم است بدانیم که چگونه می‌توان تشخیص داد که کرونا ویروس در جامعه پخش می‌شود.
 
بر اساس داده‌های موجود تا 5 مارس، مدل ما پیش بینی می‌کند که تا 31 مارس تعداد مرگ و میرها در سرتاسر جهان از 4500 نفر فراتر رود و موارد تایید شده ابتلا به 150،000 خواهد رسید. با این حال، از آن جا که این پیش بینی‌ها نشأت گرفته از پنجره دقت کوتاه مدت ماست، آنها نباید به اندازه شکل‌های بالا قابل اعتماد باشند.
 
در حال حاضر، مدل ما برای پیش بینی کوتاه مدت مناسب‌ترین است. برای انجام پیش بینی‌های طولانی مدت دقیق، به داده‌های تاریخی بیشتر و درک بهتری از متغیرهای تأثیر گذار بر گسترش COVID-19 نیاز داریم.
 
هرچه داده‌های تاریخی بیشتری به دست آوریم، پیش بینی‌های ما دقیق‌تر و دور از دسترس‌تر می‌شود.
 

چگونه پیش بینی‌های خود را انجام دادیم

برای ایجاد شبیه سازی‌های خود، ما داده‌های کرونا ویروس مربوط به تاریخ 22 ژانویه را از یک مخزن آنلاین ارائه شده توسط مرکز علوم و مهندسی سیستم‌های دانشگاه جان هاپکینز استخراج کردیم.
 
این داده‌های مُهر زمان خورده، تعداد و مکان موارد تأیید شده COVID-19 را شامل می‌شود، از جمله افرادی که بهبود یافته‌اند، و کسانی که فوت کرده‌اند.
 
انتخاب یک روش مدل سازی مناسب، انتگرال گیری روی موارد قابل اعتماد نتایجمان بود. ما از پیش بینی سری‌های زمانی استفاده کردیم، روشی که مقادیر آینده را بر اساس مقادیر قبلاً مشاهده شده پیش بینی می‌کند. این نوع پیش بینی برای پیش بینی شیوع بیماری در آینده مناسب است.
 
ما شبیه سازی‌های خود را از طریق Prophet (نوعی مدل پیش بینی سری‌های زمانی) اجرا کردیم و داده‌ها را با استفاده از زبان برنامه نویسی پایتون وارد کردیم.
 

بینش بیشتر در مقابل مصالحه بر سر حریم خصوصی

ترکیب پیش بینی‌های ایجاد شده از طریق هوش مصنوعی با داده های بزرگ و خدمات مبتنی بر مکان مانند رد یابیGPS ، می تواند بینش هدفمندی در مورد حرکات افرادی که حامل COVID-19 تشخیص داده شده‌اند، فراهم کند. به راستی چرا مسئولان بهداشت عمومی نسبت به کرونا ویروس در مقابل آنفولانزای فصلی نگران‌تر به نظر می‌رسند.
 
این اطلاعات به دولت‌ها کمک می‌کند تا برنامه‌های مؤثر اضطراری را به کار گیرند و از شیوع ویروس جلو گیری کنند.
 
ما این اتفاق را در چین مشاهده کردیم که ارائه دهندگان ارتباطات راه دور از موقعیت مکانی استفاده کردند تا به دولت چین در مورد حرکت مردم در قرنطینه هشدار و اطلاع دهند. با این حال، استفاده از چنین روش‌هایی مسائل آشکار مربوط به حریم خصوصی را مطرح می‌کند.
 

تمرکز در مناطق کوچکتر

در تجزیه و تحلیلمان ، ما فقط داده‌های جهانی را در نظر گرفتیم. اگر داده‌های محلی در دسترس قرار بگیرند، می‌توانیم تشخیص دهیم که کدام کشورها، شهرها و حتی حومه شهرها نسبت به سایر کشورها نسبت به COVID-19 آسیب پذیرتر هستند.
 
ما تا کنون می‌دانیم که مناطق مختلف احتمالاً نرخ رشد متفاوتی از COVID-19 را تجربه می‌کنند. در حال حاضر، مدل ما برای پیش بینی کوتاه مدت مناسب‌ترین است. این امر به این دلیل است که انتشار ویروس تحت تأثیر عوامل بسیاری از جمله سرعت تشخیص، واکنش دولت، تراکم جمعیت، کیفیت خدمات درمانی عمومی و آب و هوای محلی است.
 
با گسترش شیوع COVID-19 ، پاسخ جمعی جهان، مدل ما را مستعد تغییر می‌نماید. اما تا زمانی که ویروس کنترل نشود و اطلاعات بیشتری در مورد آن کسب نشود، ما اعتقاد داریم که پیش هشدار ناشی از پیش بینی باعث پیش آمادگی برای مبارزه با این ویروس است. مسلماً تبعیت از رفتار مناسب پیرو هشدار و پیش گویی، می‌تواند به کنترل شیوع COVID-19 کمک کند.
 
منبع: بلال آلسینگلاوی محمود الخُدر عمر مبین - Western Sydney UniversityCQUniversity


سبک زندگی مرتبط
ارسال نظر
با تشکر، نظر شما پس از بررسی و تایید در سایت قرار خواهد گرفت.
متاسفانه در برقراری ارتباط خطایی رخ داده. لطفاً دوباره تلاش کنید.
مقالات مرتبط
موارد بیشتر برای شما
بررسی مرقع و قطاع در خوشنویسی
بررسی مرقع و قطاع در خوشنویسی
خیابانی: آقای بیرانوند! من بخواهم از نام بردن تو معروف بشوم؟ خاک بر سر من!
play_arrow
خیابانی: آقای بیرانوند! من بخواهم از نام بردن تو معروف بشوم؟ خاک بر سر من!
توضیحات وزیر رفاه در خصوص عدم پرداخت یارانه
play_arrow
توضیحات وزیر رفاه در خصوص عدم پرداخت یارانه
حمله پهپادی حزب‌ الله به ساختمانی در نهاریا
play_arrow
حمله پهپادی حزب‌ الله به ساختمانی در نهاریا
مراسم تشییع شهید امنیت وحید اکبریان در گرگان
play_arrow
مراسم تشییع شهید امنیت وحید اکبریان در گرگان
به رگبار بستن اتوبوس توسط اشرار در محور زاهدان به چابهار
play_arrow
به رگبار بستن اتوبوس توسط اشرار در محور زاهدان به چابهار
دبیرکل حزب‌الله: هزینۀ حمله به بیروت هدف قراردادن تل‌آویو است
play_arrow
دبیرکل حزب‌الله: هزینۀ حمله به بیروت هدف قراردادن تل‌آویو است
گروسی: فردو جای خطرناکی نیست
play_arrow
گروسی: فردو جای خطرناکی نیست
گروسی: گفتگوها با ایران بسیار سازنده بود و باید ادامه پیدا کند
play_arrow
گروسی: گفتگوها با ایران بسیار سازنده بود و باید ادامه پیدا کند
گروسی: در پارچین و طالقان سایت‌های هسته‌ای نیست
play_arrow
گروسی: در پارچین و طالقان سایت‌های هسته‌ای نیست
گروسی: ایران توقف افزایش ذخایر ۶۰ درصد را پذیرفته است
play_arrow
گروسی: ایران توقف افزایش ذخایر ۶۰ درصد را پذیرفته است
سورپرایز سردار آزمون برای تولد امیر قلعه‌نویی
play_arrow
سورپرایز سردار آزمون برای تولد امیر قلعه‌نویی
رهبر انقلاب: حوزه‌ علمیه باید در مورد نحوه حکمرانی و پدیده‌های جدید نظر بدهد
play_arrow
رهبر انقلاب: حوزه‌ علمیه باید در مورد نحوه حکمرانی و پدیده‌های جدید نظر بدهد
حملات خمپاره‌ای سرایاالقدس علیه مواضع دشمن در جبالیا
play_arrow
حملات خمپاره‌ای سرایاالقدس علیه مواضع دشمن در جبالیا
کنایه علی لاریجانی به حملات تهدیدآمیز صهیونیست‌ها
play_arrow
کنایه علی لاریجانی به حملات تهدیدآمیز صهیونیست‌ها