خطای اندازه گیری

هر چه اسباب اندازه گیری دقیقتر باشد اندازه اشتباه کمتر است، در اندازه گیریهای فیزیک چنانچه درجه دقت معلوم نباشد، اندازه گیری نمی‌تواند کاملا مورد استفاده قرار گیرد، اطلاع بر حدود خطا اغلب از اتلاف وقت آزمایش کننده جلوگیری می‌کند مثلا ممکن است یک کمیت از روی کمیات دیگر محاسبه می‌شود و در رابطه‌ای که مورد
سه‌شنبه، 15 دی 1388
تخمین زمان مطالعه:
موارد بیشتر برای شما
خطای اندازه گیری
خطای اندازه گیری
خطای اندازه گیری






هنگامی که یک کمیت با یک اسباب اندازه گیری می‌شود به علت عوامل مختلف اندازه گیری با اندازه حقیقی اختلاف دارد و این اختلاف را خطای اندازه گیری گویند.

دید کلی

هر چه اسباب اندازه گیری دقیقتر باشد اندازه اشتباه کمتر است، در اندازه گیریهای فیزیک چنانچه درجه دقت معلوم نباشد، اندازه گیری نمی‌تواند کاملا مورد استفاده قرار گیرد، اطلاع بر حدود خطا اغلب از اتلاف وقت آزمایش کننده جلوگیری می‌کند مثلا ممکن است یک کمیت از روی کمیات دیگر محاسبه می‌شود و در رابطه‌ای که مورد استفاده قرار می‌گیرد یک کمیت با توان n و در کمیت دیگر با توانی کمتر از n وارد شود.

خطاهای قابل اجتناب

این خطاها در نتیجه روش غلط اندازه گیری یا نقص اسباب یا خطا در طرز خواندن رخ می‌دهد که البته می‌توان اینگونه اشتباهات را رفع کرد.

خطاهای غیر قابل اجتناب

این خطاها ، خطاهایی هستند که می‌توان حدود آنها را تخمین زد، خطاهای اتفاقی قسمتی از خطاهای غیر قابل اجتناب است، هنگامی که با یک اسباب و در شرایط متشابه ، یک عمل اندازه گیری تکرار شود نتایج حاصله در اثر خطای اتفاقی اختلاف پیدا می‌کند. مثلا اگر طول میله‌ای را بخواهیم با دقت حدود یک سانتیمتر اندازه بگیریم در تمام اندازه گیریهای مکرر عددی مانند 15 سانتیمتر بدست می‌آید، ولی اگر بخواهیم با دقت 10/1 میلیمتر اندازه بگیریم ممکن است به ترتیب نتایجی از قبیل 15.56 و 15.69 و 15.61 و 15.56 و 15.58 و 16.61 سانتیمتر می‌شود. اگر به دفعات متعدد آزمایش تکرار شود اغلب نتایج در حول یک مقدار متوسط خواهد بود.

خطای ماکزیمم

اگر نتایج اندازه گیری یک کمیت را با x1 و x2 و ... و xn نمایش دهیم مقدار متوسط عددی x = (x1 + x2 + … + xn)/n را می‌توان اندازه آن کمیت اختیار کرد و بزرگترین مقادیر: |xn - x| , … , |x1 - x| را خطای ماکزیمم گویند. هنگامی که یک یا چند نتیجه اندازه گیری از مقدار متوسط اختلاف اتفاقی قابل ملاحظه داشته باشد در محاسبات مربوط به خطا ، خطای متوسط را در نظر می‌گیرند.

خطای مطلق

اگر نتیجه اندازه گیری برای یک کمیت به x نمایش داده شود و اندازه حقیقی آن کمیت که برای ما نامعلوم است x + ∆x فرض شود تفاضل این دو مقدار یعنی (x - (x+∆x که مساوی x∆- است، خطای مطلق اندازه گیری نامیده می‌شود.

خطای نسبی

نسبت خطای مطلق به اندازه حقیقی کمیت را که مساوی ∆x/x- است را خطای نسبی می‌نامند.

محاسبات مربوط به خطا

اگر اندازه یک کمیت ε را با دو کمیت y , x بوسیله (ε = f(y,x بستگی داشته باشد، اشتباهی را که روی اندازه ε در اثر خطا روی y , x رخ می‌دهد، می‌توان محاسبه کرد:
(Z = f(x,y) - f(x+∆x , y+∆y
∆x∆ کوچک هستند در محاسبات مربوط می‌توان ∆y چون مقادیر ε این مقادیر را مانند دیفرانسیل ε , y , x منظور داشت یعنی: ∆y∆∆x + fyε = fx چون علامت خطا برای ما نامعلوم است، از این جهت در محاسبات مربوط قدر مطلق خطا در نظر گرفته می‌شود. اگر کمیت ε برابر یا تفاضل دو کمیت y , x باشد خطای مطلق ماکزیمم روی ε برابر مجموع خطاهای مطلق ماکزیمم روی y , x خواهد بود. مقادیر تقریبی بعضی عبارات جبری و خطوط مثلثاتی و میزان خطا که باید در محاسبات مورد توجه قرار گیرد. هنگامی که x کوچک باشد بجای عبارات ستون اول ، ستون دوم و اندازه تقریبی خطا در ستون 3 قید شده است.

خطا که تفاوت دو عبارت است

عبارت تقریبی

عبارت اصلی

x²-

1+2x

2(1 + x)

x²-

1-2x

2(1 - x)

x³/6

x radians

Sinx

x²/2

x radians

Cosx

x³/3-

x radians

tanx


منبع:http://atwis.com




نظرات کاربران
ارسال نظر
با تشکر، نظر شما پس از بررسی و تایید در سایت قرار خواهد گرفت.
متاسفانه در برقراری ارتباط خطایی رخ داده. لطفاً دوباره تلاش کنید.
مقالات مرتبط